Skip to main content
Chemistry LibreTexts

1.9.5: Entropies- Solutions- Limiting Partial Molar Entropies

  • Page ID
    375470
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A key equation relates the chemical potential and partial molar entropy of solute-\(j\). For a given solute \(j\) in an aqueous solution,

    \[\mathrm{S}_{\mathrm{j}}(\mathrm{aq})=-\left[\partial \mu_{\mathrm{j}}(\mathrm{aq}) / \partial T\right]_{\mathrm{p}} \nonumber \]

    In order to appreciate the importance of equation (a) we initially confine our attention to the properties of a solution whose thermodynamic properties are ideal. A given aqueous solution contains solute \(j\) at temperature \(\mathrm{T}\) and ambient pressure (which is close to the standard pressure).

    \[\mu_{\mathrm{j}}(\mathrm{aq} ; \mathrm{id} ; \mathrm{T} ; \mathrm{p})=\mu_{\mathrm{j}}^{0}(\mathrm{aq} ; \mathrm{T} ; \mathrm{p})+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{m}_{\mathrm{j}} / \mathrm{m}^{0}\right) \nonumber \]

    Using equation (a),

    \[\mathrm{S}_{\mathrm{j}}(\mathrm{aq} ; \mathrm{id} ; \mathrm{T} ; \mathrm{p})=\mathrm{S}_{\mathrm{j}}^{0}(\mathrm{aq} ; \mathrm{T} ; \mathrm{p})-\mathrm{R} \, \ln \left(\mathrm{m}_{\mathrm{j}} / \mathrm{m}^{0}\right) \nonumber \]

    \(\mathrm{S}_{\mathrm{j}}^{0}(\mathrm{aq} ; \mathrm{T} ; \mathrm{p})\) is the partial molar entropy of solute \(j\) in an ideal aqueous solution having unit molality [1,2]. Therefore for both real and ideal solutions [3],

    \[\operatorname{limit}\left(m_{j} \rightarrow 0\right) S_{j}(a q ; T ; p)=+\infty \nonumber \]

    In other words the limiting partial molar entropy for solute \(j\) is infinite. Interestingly if the aqueous solution contains two solutes \(j\) and \(\mathrm{k}\), then the following condition holds for solutions at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\).

    \[\operatorname{limit}\left(\mathrm{m}_{\mathrm{j}} \rightarrow 0 ; \mathrm{m}_{\mathrm{k}} \rightarrow 0\right)\left[\mathrm{S}_{\mathrm{j}}(\mathrm{aq} ; \mathrm{T} ; \mathrm{p})-\mathrm{S}_{\mathrm{k}}(\mathrm{aq} ; \mathrm{T} ; \mathrm{p})\right]=\mathrm{S}_{\mathrm{j}}^{0}(\mathrm{aq})-\mathrm{S}_{\mathrm{k}}^{0}(\mathrm{aq}) \nonumber \]

    Similarly

    \[\operatorname{limit}\left(\mathrm{m}_{\mathrm{j}} \rightarrow 0 ; \mathrm{m}_{\mathrm{k}} \rightarrow 0\right)\left[\mu_{\mathrm{j}}(\mathrm{aq} ; \mathrm{T} ; \mathrm{p})-\mu_{\mathrm{k}}(\mathrm{aq} ; \mathrm{T} ; \mathrm{p})\right]=\mu_{\mathrm{j}}^{0}(\mathrm{aq})-\mu_{\mathrm{k}}^{0}(\mathrm{aq}) \nonumber \]

    The partial molar entropy of solute \(j\) in a real solution is given by equation (g).

    \[\begin{aligned}
    &S_{j}(a q ; T ; p)= \\
    &S_{j}^{0}(a q ; T ; p)-R \, \ln \left(m_{j} / m^{0}\right)-R \, \ln \left(\gamma_{j}\right)-R \, T \,\left[\frac{\partial \ln \left(\gamma_{j}\right)}{\partial T}\right]_{p}
    \end{aligned} \nonumber \]

    A given aqueous solution having thermodynamic properties which are ideal contains a solute \(j\), molality \(\mathrm{m}_{j}\). The partial molar entropy of the solvent is given by equation (h).

    \[\mathrm{S}_{1}(\mathrm{aq} ; \mathrm{id} ; \mathrm{T} ; \mathrm{p})=\mathrm{S}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p})+\mathrm{R} \, \mathrm{M}_{1} \, \mathrm{m}_{\mathrm{j}} \nonumber \]

    Hence,

    \[\operatorname{limit}\left(\mathrm{m}_{\mathrm{j}} \rightarrow 0\right) \mathrm{S}_{1}(\mathrm{aq} ; \mathrm{id} ; \mathrm{T} ; \mathrm{p})=\mathrm{S}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}) \nonumber \]

    When an ideal solution is diluted the partial molar entropy of the solvent approaches that of the pure solvent.

    A given aqueous solution is prepared using \(1 \mathrm{~kg}\) of solvent and \(\mathrm{m}_{j}\) moles of solute \(j\) at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\), the latter being close to the standard pressure. The entropy of the solution is given by equation (j).

    \[\mathrm{S}\left(\mathrm{aq} ; \mathrm{w}_{1}=1 \mathrm{~kg}\right)=\mathrm{M}_{1}^{-1} \, \mathrm{S}_{1}(\mathrm{aq})+\mathrm{m}_{\mathrm{j}} \, \mathrm{S}_{\mathrm{j}}(\mathrm{aq}) \nonumber \]

    In the event that the thermodynamic properties of the solution are ideal the entropy of the solution is given by equation (k).

    \[\begin{aligned}
    &\mathrm{S}\left(\mathrm{aq} ; \mathrm{id} ; \mathrm{w}_{1}=1 \mathrm{~kg}\right)= \\
    &\quad \mathrm{M}_{1}^{-1} \,\left[\mathrm{S}_{1}^{*}(\ell)+\mathrm{R} \, \mathrm{M}_{1} \, \mathrm{m}_{\mathrm{j}}\right]+\mathrm{m}_{\mathrm{j}} \,\left[\mathrm{S}_{\mathrm{j}}^{0}(\mathrm{aq})-\mathrm{R} \, \ln \left(\mathrm{m}_{\mathrm{j}} / \mathrm{m}^{0}\right)\right]
    \end{aligned} \nonumber \]

    Interestingly,

    \[\begin{aligned}
    &\operatorname{limit}\left(\mathrm{m}_{\mathrm{j}} \rightarrow 0\right) \mathrm{S}\left(\mathrm{aq} ; \mathrm{id} ; \mathrm{w}_{1}=1 \mathrm{~kg}\right)= \\
    &\mathrm{M}_{1}^{-1} \, \mathrm{S}_{1}^{*}(\ell)+(0) \,\left[\mathrm{S}_{\mathrm{j}}^{0}(\mathrm{aq})-\mathrm{R} \, \ln \left(0 / \mathrm{m}^{0}\right)\right]
    \end{aligned} \nonumber \]

    But

    \[\operatorname{limit}\left(\mathrm{m}_{\mathrm{j}} \rightarrow 0\right) \mathrm{m}_{\mathrm{j}} \, \ln \left(\mathrm{m}_{\mathrm{j}} / \mathrm{m}^{0}\right)=0 \nonumber \]

    In other words the entropy for an ideal solution in the limit of infinite dilution is given by the entropy of the pure solvent. For a real solution,

    \[\mathrm{S}_{1}(\mathrm{aq} ; \mathrm{T} ; \mathrm{p})=\mathrm{S}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p})+\phi \, \mathrm{R} \, \mathrm{M}_{1} \, \mathrm{m}_{\mathrm{j}}+\mathrm{R} \, \mathrm{T} \, \mathrm{M}_{1} \, \mathrm{m}_{\mathrm{j}} \,\left(\frac{\partial \phi}{\partial \mathrm{T}}\right)_{\mathrm{p}} \nonumber \]

    Hence,

    \[\begin{aligned}
    &\mathrm{S}\left(\mathrm{aq} ; \mathrm{w}_{1}=1 \mathrm{~kg} ; \mathrm{T} ; \mathrm{p}\right) \\
    &=\mathrm{M}_{1}^{-1} \,\left[\mathrm{S}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p})+\phi \, \mathrm{R} \, \mathrm{M}_{1} \, \mathrm{m}_{\mathrm{j}}+\mathrm{R} \, \mathrm{T} \, \mathrm{M}_{1} \, \mathrm{m}_{\mathrm{j}} \,\left(\frac{\partial \phi}{\partial \mathrm{T}}\right)_{\mathrm{p}}\right] \\
    &\quad+\mathrm{m}_{\mathrm{j}} \,\left[\mathrm{S}_{\mathrm{j}}^{0}(\mathrm{aq} ; \mathrm{T} ; \mathrm{p})-\mathrm{R} \, \ln \left(\mathrm{m}_{\mathrm{j}} \, \gamma_{\mathrm{j}} / \mathrm{m}^{0}\right)-\mathrm{R} \, \mathrm{T} \,\left(\frac{\partial \ln \left(\gamma_{\mathrm{j}}\right)}{\partial \mathrm{T}}\right)_{\mathrm{p}}\right]
    \end{aligned} \nonumber \]

    The difference \(\left[\mathrm{S}\left(\mathrm{aq} ; \mathrm{w}_{1}=1 \mathrm{~kg} ; \mathrm{T} ; \mathrm{p}\right)-\mathrm{S}\left(\mathrm{aq} ; \mathrm{id} ; \mathrm{w}_{1}=1 \mathrm{~kg} ; \mathrm{T} ; \mathrm{p}\right)\right]\) yields the excess entropy, \(\mathrm{S}^{\mathrm{E}}\left(\mathrm{aq} ; \mathrm{w}_{1}=1 \mathrm{~kg} ; \mathrm{T} ; \mathrm{p}\right)\).

    Footnotes

    [1] For a salt solution, the standard partial molar entropy of the salt is given by the sum of standard partial molar entropies of the ions. For a 1:1 salt, \(S_{j}^{0}(a q)=S_{+}^{0}(a q)+S_{-}^{0}(a q)\)

    [2] Y. Marcus and A. Loewenschuss, Annu. Rep. Prog. Chem., Ser. C, Phys. Chem., 1984, 81, chapter 4.

    [3] For comments on the entropy of dilution of salt solutions see (a classic paper), H. S. Frank and A. L. Robinson, J. Chem. Phys.,1940,8,933.

    [4] For comments on partial molar entropies of apolar solutes in aqueous solutions see, H. S. Frank and F. Franks, J. Chem. Phys.,1968,48,4746.


    This page titled 1.9.5: Entropies- Solutions- Limiting Partial Molar Entropies is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.