Skip to main content
Chemistry LibreTexts

1.8.8: Enthalpies- Solutions- Simple Solutes- Interaction Parameters

  • Page ID
    375259
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The excess Gibbs energy \(\mathrm{G}^{\mathrm{E}}\) for a dilute aqueous solution containing a simple solute \(j\) prepared using \(1 \mathrm{~kg}\) of solvent, water is given by equation (a).

    \[\mathrm{G}^{\mathrm{E}}=\mathrm{R} \, \mathrm{T} \, \mathrm{m}_{\mathrm{j}} \,\left[1-\phi+\ln \left(\gamma_{\mathrm{j}}\right)\right] \nonumber \]

    In terms of Gibbs energies pairwise solute-solute interaction parameters,

    \[\mathrm{G}^{\mathrm{E}}=\mathrm{g}_{\mathrm{jj}} \,\left[\mathrm{m}_{\mathrm{j}} / \mathrm{m}^{0}\right]^{2} \nonumber \]

    The excess enthalpy[1]

    \[\mathrm{H}^{\mathrm{E}}=\mathrm{h}_{\mathrm{ij}} \,\left[\mathrm{m}_{\mathrm{j}} / \mathrm{m}^{0}\right]^{2} \nonumber \]

    where [cf. Gibbs –Helmholtz Equation],

    \[\mathrm{h}_{\mathrm{ij}}=-\mathrm{T}^{2} \,\left\{\partial\left[\mathrm{g}_{\mathrm{jj}} / \mathrm{T}\right] / \partial \mathrm{T}\right\}_{\mathrm{p}} \nonumber \]

    Here \(\mathrm{h}_{\mathrm{jj}}\) is the pairwise solute-solute enthalpic interaction parameter. For the solvent,

    \[\mu_{1}(\mathrm{aq})=\mu_{1}^{*}(\lambda)-\mathrm{R} \, \mathrm{T} \, \mathrm{M}_{1} \, \mathrm{m}_{\mathrm{j}}-\mathrm{M}_{1} \, \mathrm{g}_{\mathrm{j}} \,\left(\mathrm{m}_{\mathrm{j}} / \mathrm{m}^{0}\right)^{2} \nonumber \]

    Using the Gibbs-Helmholtz Equation,

    \[\mathrm{H}_{1}(\mathrm{aq})=\mathrm{H}_{1}^{*}(\lambda)-\mathrm{M}_{1} \, \mathrm{h}_{\mathrm{ij}} \,\left(\mathrm{m}_{\mathrm{j}} / \mathrm{m}^{0}\right)^{2} \nonumber \]

    For the solute,

    \[\mu_{\mathrm{j}}(\mathrm{aq})=\mu_{\mathrm{j}}^{0}(\mathrm{aq})+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{m}_{\mathrm{j}} / \mathrm{m}^{0}\right)+2 \, \mathrm{g}_{\mathrm{ij}} \,\left(\mathrm{m}^{0}\right)^{-2} \, \mathrm{m}_{\mathrm{j}} \nonumber \]

    Then using the Gibbs-Helmholtz Equation [2]

    \[\mathrm{H}_{\mathrm{j}}(\mathrm{aq})=\mathrm{H}_{\mathrm{j}}^{\infty}(\mathrm{aq})+2 \, \mathrm{h}_{\mathrm{ij}} \,\left(\mathrm{m}^{0}\right)^{-2} \, \mathrm{m}_{\mathrm{j}} \nonumber \]

    Alternatively we may express the enthalpy of the solution in terms of the apparent molar enthalpy of the solute, \(\phi\left(\mathrm{H}_{\mathrm{j}}\right)\).

    \[\mathrm{H}\left(\mathrm{aq} ; \mathrm{w}_{1}=1 \mathrm{~kg}\right)=\left(1 / \mathrm{M}_{1}\right) \, \mathrm{H}_{1}^{*}(\lambda)+\mathrm{m}_{\mathrm{j}} \, \phi\left(\mathrm{H}_{\mathrm{j}}\right) \nonumber \]

    For the ideal solution,

    \[\mathrm{H}\left(\mathrm{aq} ; \mathrm{id} ; \mathrm{w}_{1}=1 \mathrm{~kg}\right)=\left(1 / \mathrm{M}_{1}\right) \, \mathrm{H}_{1}^{*}(\lambda)+\mathrm{m}_{\mathrm{j}} \, \phi\left(\mathrm{H}_{\mathrm{j}}\right)^{\infty} \nonumber \]

    where \(\phi\left(\mathrm{H}_{\mathrm{j}}\right)^{\infty}=\mathrm{H}_{\mathrm{j}}^{\infty}(\mathrm{aq})\). Then

    \[\mathrm{H}^{\mathrm{E}}=\mathrm{m}_{\mathrm{j}} \,\left[\phi\left(\mathrm{H}_{\mathrm{j}}\right)-\phi\left(\mathrm{H}_{\mathrm{j}}\right)^{\infty}\right] \nonumber \]

    Hence using equation (c),

    \[\phi\left(\mathrm{H}_{\mathrm{j}}\right)=\phi\left(\mathrm{H}_{\mathrm{j}}\right)^{\infty}+\mathrm{h}_{\mathrm{ji}} \,\left(\mathrm{m}^{0}\right)^{-2} \, \mathrm{m}_{\mathrm{j}} \nonumber \]

    We use these equations in the analysis of a calorimetric data where a given solution is diluted. The solution is prepared using \(\mathrm{n}_{1}\) moles of solvent (water) and \(\mathrm{n}_{j}\) moles of a simple solute \(j\). Then

    \[\mathrm{H}(\mathrm{I} ; \mathrm{aq})=\mathrm{n}_{1} \, \mathrm{H}_{1}^{*}(\lambda)+\mathrm{n}_{\mathrm{j}} \, \phi\left(\mathrm{H}_{\mathrm{j}} ; \mathrm{I} ; \mathrm{aq}\right) \nonumber \]

    A new solution is prepared by adding (in the calorimeter) \(\Delta \mathrm{n}_{1}\) moles of solvent, Then

    \[\mathrm{H}(\mathrm{II} ; \mathrm{aq})=\left(\mathrm{n}_{1}+\Delta \mathrm{n}_{1}\right) \, \mathrm{H}_{1}^{*}(\lambda)+\mathrm{n}_{\mathrm{j}} \, \phi\left(\mathrm{H}_{\mathrm{j}} ; \mathrm{II} ; \mathrm{aq}\right) \nonumber \]

    Thus the molality of solute \(j\) changes from \(\mathrm{m}_{j}\)(I) \(\left[=\mathrm{n}_{\mathrm{j}} / \mathrm{n}_{1} \, \mathrm{M}_{1}\right]\) to \(\mathrm{m}_{j}\)(II) \(\left[=\mathrm{n}_{\mathrm{j}} /\left(\mathrm{n}_{1}+\Delta \mathrm{n}_{1}\right) \, \mathrm{M}_{1}\right]\). Therefore,

    \[\phi\left(\mathrm{H}_{\mathrm{j}} ; \mathrm{I} ; \mathrm{aq}\right)=\phi\left(\mathrm{H}_{\mathrm{j}}\right)^{\infty}+\left[\mathrm{h}_{\mathrm{ij}} \,\left(\mathrm{m}^{0}\right)^{-2} \, \mathrm{n}_{\mathrm{j}} / \mathrm{n}_{1} \, \mathrm{M}_{1}\right] \nonumber \]

    And

    \[\phi\left(\mathrm{H}_{\mathrm{j}} ; \mathrm{II} ; \mathrm{aq}\right)=\phi\left(\mathrm{H}_{\mathrm{j}}\right)^{\infty}+\left[\mathrm{h}_{\mathrm{j}} \,\left(\mathrm{m}^{0}\right)^{-2} \, \mathrm{n}_{\mathrm{j}} /\left(\mathrm{n}_{1}+\Delta \mathrm{n}_{1}\right) \, \mathrm{M}_{1}\right] \nonumber \]

    In fact we record the heat \(\mathrm{q}\) (at constant pressure) when \(\Delta \mathrm{n}_{1}\) moles of solvent are added to solution I to form solution II. Thus,

    \[\mathrm{q}=\mathrm{H}(\mathrm{II} ; \mathrm{aq})-\mathrm{H}(\mathrm{I} ; \mathrm{aq})-\Delta \mathrm{n} \, \mathrm{H}_{1}^{*}(\lambda) \nonumber \]

    Footnotes

    [1] From equation (a) and (b) \(\mathrm{G}^{\mathrm{E}}=\left[\mathrm{J} \mathrm{kg}^{-1}\right]\) From equation (c) \(\mathrm{H}^{\mathrm{E}}=\left[\mathrm{J} \mathrm{kg}^{-1}\right]\)

    [2] A check on the equations with reference to solution prepared using \(1 \mathrm{~kg}\) of solvent.

    \[\begin{aligned}
    \mathrm{H}\left(\mathrm{aq} ; \mathrm{w}_{1}=1 \mathrm{~kg}\right)=\left(1 / \mathrm{M}_{1}\right) \,\left[\mathrm{H}_{1}^{*}(\lambda)-\mathrm{M}_{1} \, \mathrm{h}_{\mathrm{ji}} \,\left(\mathrm{m}_{\mathrm{j}} / \mathrm{m}^{0}\right)^{2}\right] \\
    &+\mathrm{m}_{\mathrm{j}} \,\left[\mathrm{H}_{\mathrm{j}}^{\infty}(\mathrm{aq})+2 \, \mathrm{h}_{\mathrm{jj}} \,\left(\mathrm{m}^{0}\right)^{-2} \, \mathrm{m}_{\mathrm{j}}\right]
    \end{aligned} \nonumber \]

    Or,

    \[\begin{aligned}
    \mathrm{H}\left(\mathrm{aq} ; \mathrm{w}_{1}=1 \mathrm{~kg}\right)=\left(1 / \mathrm{M}_{1}\right) \, \mathrm{H}_{1}^{*} &(\lambda)-\mathrm{h}_{\mathrm{jj}} \,\left(\mathrm{m}_{\mathrm{j}} / \mathrm{m}^{0}\right)^{2} \\
    &+\mathrm{m}_{\mathrm{j}} \, \mathrm{H}_{\mathrm{j}}^{\infty}(\mathrm{aq})+2 \, \mathrm{h}_{\mathrm{ij}} \,\left(\mathrm{m}_{\mathrm{j}} / \mathrm{m}^{0}\right)^{2}
    \end{aligned} \nonumber \]

    Then

    \[\mathrm{H}\left(\mathrm{aq} ; \mathrm{w}_{1}=1 \mathrm{~kg}\right)=\left(1 / \mathrm{M}_{1}\right) \, \mathrm{H}_{1}^{*}(\lambda)+\mathrm{m}_{\mathrm{i}} \, \mathrm{H}_{\mathrm{i}}^{\infty}(\mathrm{aq})+\mathrm{H}^{\mathrm{E}} \nonumber \]


    This page titled 1.8.8: Enthalpies- Solutions- Simple Solutes- Interaction Parameters is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.