Skip to main content
Chemistry LibreTexts

1.8.5: Enthalpies- Solutions- Equilibrium and Frozen Partial Molar Enthalpies

  • Page ID
    374779
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A given system at fixed \(\mathrm{T}\) and \(\mathrm{p}\) is at thermodynamic equilibrium. The enthalpy of the system is perturbed by adding \(\delta \mathrm{n}_{j}\) moles of chemical substance \(j\). We imagine two possible limiting changes to the system. In one limit the enthalpy of the system changes to a neighbouring state where the extent of chemical reaction remains constant; i.e. at fixed \(\xi\). In another limit the enthalpy of the system changes to a neighbouring state where the affinity for spontaneous change \(\mathrm{A}\) remains constant. The two differential changes in enthalpy are related.

    \[\left(\frac{\partial H}{\partial n_{j}}\right)_{A}=\left(\frac{\partial H}{\partial n_{j}}\right)_{\xi}-\left(\frac{\partial \mathrm{A}}{\partial n_{j}}\right)_{\xi} \,\left(\frac{\partial \xi}{\partial A}\right)_{n_{j}} \,\left(\frac{\partial H}{\partial \xi}\right)_{n_{j}}\]

    We identify the state being perturbed as the equilibrium state where \(\mathrm{A} = 0\) and the composition-organisation is represented by \(\xi^{\mathrm{eq}\). We identify two quantities describing the impact of adding \(\delta \mathrm{n}_{j}\) moles of chemical substance \(j\).

    Equilibrium partial molar enthalpy,

    \[\mathrm{H}_{\mathrm{j}}(\mathrm{A}=0)=\left(\frac{\partial \mathrm{H}}{\partial \mathrm{n}_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{p}, \mathrm{A}=0}\]

    Frozen partial molar enthalpy,

    \[\mathrm{H}_{\mathrm{j}}\left(\xi^{\mathrm{eq}}\right)=\left(\frac{\partial \mathrm{H}}{\partial \mathrm{n}_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{p}, \xi^{\mathrm{eq}}}\]

    Because the triple product term on the r.h.s. of equation (a) is not zero at equilibrium (i.e. at \(\mathrm{A} = \text { zero}\) and \(\xi = \xi^{\mathrm{eq}}\)), then \(\mathrm{H}_{\mathrm{j}}(\mathrm{A}=0)\) is not equal to. By convention, the term ‘ partial molar enthalpy is taken to mean \(\mathrm{H}_{\mathrm{j}}(\mathrm{A}=0)\).


    This page titled 1.8.5: Enthalpies- Solutions- Equilibrium and Frozen Partial Molar Enthalpies is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.