Skip to main content
Chemistry LibreTexts

1.7.21: Compressions- Isothermal- Binary Aqueous Mixtures

  • Page ID
    374453
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A given binary aqueous mixture is prepared using \(\mathrm{n}_{1}\) moles of water (\(\ell\)) and \(\mathrm{n}_{2}\) moles of liquid 2. The volume of the mixture, \(\mathrm{V}(\mathrm{mix})\) is given by equation (a) (at fixed temperature and pressure).

    \[\mathrm{V}(\operatorname{mix})=\mathrm{n}_{1} \, \mathrm{V}_{1}(\operatorname{mix})+\mathrm{n}_{2} \, \mathrm{V}_{2}(\mathrm{mix})\]

    The mixture is perturbed by a change in pressure at fixed temperature along an equilibrium pathway where the affinity for spontaneous change remains at zero.

    \[\left(\frac{\partial \mathrm{V}(\mathrm{mix})}{\partial \mathrm{p}}\right)_{\mathrm{T}}=\mathrm{n}_{1} \,\left(\frac{\partial \mathrm{V}_{1}(\mathrm{mix})}{\partial \mathrm{p}}\right)_{\mathrm{T}}+\mathrm{n}_{2} \,\left(\frac{\partial \mathrm{V}_{2}(\mathrm{mix})}{\partial \mathrm{p}}\right)_{\mathrm{T}}\]

    The isothermal compression of the mixture \([\partial \mathrm{V}(\mathrm{mix}) / \partial \mathrm{p}]_{\mathrm{T}}\) is an extensive property. The partial differentials \(\left[\partial V_{1}(\operatorname{mix}) / \partial p\right]_{T}\) and \(\left[\partial V_{2}(\operatorname{mix}) / \partial \mathrm{p}\right]_{\mathrm{T}}\) are intensive properties. There is merit in defining an intensive molar compression using equation (c).

    \[\mathrm{K}_{\mathrm{Tm}}=\frac{\mathrm{K}_{\mathrm{T}}(\operatorname{mix})}{\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)}=-\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)^{-1} \,[\partial \mathrm{V}(\operatorname{mix}) / \partial \mathrm{p}]_{\mathrm{T}}\]

    By definition,

    \[\mathrm{K}_{\mathrm{T} 1}(\operatorname{mix})=-\left[\partial \mathrm{V}_{1}(\operatorname{mix}) / \partial \mathrm{p}\right]_{\mathrm{T}}\]

    And

    \[\mathrm{K}_{\mathrm{T} 2}(\operatorname{mix})=-\left[\partial \mathrm{V}_{2}(\operatorname{mix}) / \partial \mathrm{p}\right]_{\mathrm{T}}\]

    Hence

    \[\mathrm{K}_{\mathrm{Tm}}(\operatorname{mix})=\mathrm{x}_{1} \, \mathrm{K}_{\mathrm{T} 1}(\operatorname{mix})+\mathrm{x}_{2} \, \mathrm{K}_{\mathrm{T} 2}(\operatorname{mix})\]

    For an ideal binary mixture,

    \[\mathrm{V}(\operatorname{mix} ; \mathrm{id})=\mathrm{n}_{1} \, \mathrm{V}_{1}^{*}(\ell)+\mathrm{n}_{2} \, \mathrm{V}_{2}^{*}(\ell)\]

    \(\mathrm{V}_{1}^{*}(\ell)\) and \(\mathrm{V}_{2}^{*}(\ell)\) are the molar volumes of the pure liquids at the same \(\mathrm{T}\) and \(\mathrm{p}\). Therefore, following the argument outlined above,

    \[\mathrm{K}_{\mathrm{Tm}}(\mathrm{id})=\mathrm{x}_{1} \, \mathrm{K}_{\mathrm{T} 1}^{*}(\ell)+\mathrm{x}_{2} \, \mathrm{K}_{\mathrm{T} 2}^{*}(\ell)\]

    By definition,

    \[\mathrm{K}_{\mathrm{T}}^{\mathrm{E}}(\operatorname{mix})=\mathrm{K}_{\mathrm{Tm}}(\operatorname{mix})-\mathrm{K}_{\mathrm{Tm}}(\operatorname{mix} ; \mathrm{id})\]

    Hence the excess molar compression is given by equation (j).

    \[\mathrm{K}_{\mathrm{Tm}}^{\mathrm{E}}(\operatorname{mix})=\mathrm{x}_{1} \,\left[\mathrm{K}_{\mathrm{T} 1}(\operatorname{mix})-\mathrm{K}_{\mathrm{T} 1}^{*}(\ell)\right]+\mathrm{x}_{2} \,\left[\mathrm{K}_{\mathrm{T} 2}(\operatorname{mix})-\mathrm{K}_{\mathrm{T} 2}^{*}(\ell)\right]\]


    This page titled 1.7.21: Compressions- Isothermal- Binary Aqueous Mixtures is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.