Skip to main content
Chemistry LibreTexts

1.7.13: Compressions- Isothermal- Equilibrium and Frozen

  • Page ID
    374370
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The volume of a given closed system is defined by the set of independent variables \(\mathrm{T}\), \(\mathrm{p}\) and composition \(\xi\); \(\mathrm{V}=\mathrm{V}[\mathrm{T}, \mathrm{p}, \xi]\). We assert that in this state the affinity for spontaneous chemical reaction is \(\mathrm{A}\). The system is perturbed by a change in pressure such that the system can track one of two pathways; (i) at constant \(\mathrm{A}\) or (ii) at constant \(\xi\). The differential dependences of volume on pressure are related using equation (a).

    \[\left(\frac{\partial \mathrm{V}}{\partial \mathrm{p}}\right)_{\mathrm{T}, \mathrm{A}}=\left(\frac{\partial \mathrm{V}}{\partial \mathrm{p}}\right)_{\mathrm{T}, \xi}-\left(\frac{\partial \mathrm{A}}{\partial \mathrm{p}}\right)_{\mathrm{T}, \xi} \,\left(\frac{\partial \xi}{\partial \mathrm{A}}\right)_{\mathrm{T}, \mathrm{p}} \,\left(\frac{\partial \mathrm{V}}{\partial \xi}\right)_{\mathrm{T}, \mathrm{p}} \nonumber \]

    The two differentials expressing the dependence of volume on pressure define the equilibrium isothermal compression and the frozen isothermal compression respectively [1]. For a system at equilibrium, (i.e. minimum in \(\mathrm{G}\) at fixed \(\mathrm{T}\) and \(\mathrm{p}\)) following perturbation by a change in pressure,

    \[\mathrm{K}_{\mathrm{T}}(\mathrm{A}=0)=-\left(\frac{\partial \mathrm{V}}{\partial \mathrm{p}}\right)_{\mathrm{T}, \mathrm{A}=0} \quad \mathrm{~K}_{\mathrm{T}}\left(\xi^{\mathrm{eq}}\right)=-\left(\frac{\partial \mathrm{V}}{\partial \mathrm{p}}\right)_{\mathrm{T}, \xi^{\mathrm{a}}} \nonumber \]

    The negative signs recognise that for all thermodynamically stable systems, the volume decreases with increase in pressure. Nevertheless there is merit in thinking of compression (and compressibility) as a positive feature of a system. Both \(\mathrm{K}_{\mathrm{T}}\left(\xi^{\mathrm{eq}}\right)\) and \(\mathrm{K}_{\mathrm{T}}(\mathrm{A}=0)\) are extensive variables characterising two possible pathways. From equation (a) [2],

    \[\mathrm{K}_{\mathrm{T}}(\mathrm{A}=0)=\mathrm{K}_{\mathrm{T}}\left(\xi^{\mathrm{eq}}\right)-\left[\left(\frac{\partial \mathrm{V}}{\partial \xi}\right)_{\mathrm{T}, \mathrm{p}}\right]^{2} \,\left(\frac{\partial \xi}{\partial \mathrm{A}}\right)_{\mathrm{T}, \mathrm{p}} \nonumber \]

    But at equilibrium, \((\partial \mathrm{A} / \partial \xi)_{\mathrm{T}, \mathrm{p}}<0\). Hence, irrespective of the sign of \((\partial \mathrm{V} / \partial \xi)_{\mathrm{T}, \mathrm{p}}\), \(\mathrm{K}_{\mathrm{T}}(\mathrm{A}=0)>\mathrm{K}_{\mathrm{T}}\left(\xi^{\mathrm{eq}}\right)\). Equation (c) is rewritten in terms of compressibilities [3].

    \[\kappa_{\mathrm{T}}(\mathrm{A}=0)=-(1 / \mathrm{V}) \,(\partial \mathrm{V} / \partial \mathrm{p})_{\mathrm{T}, \mathrm{A}=0} \quad \kappa_{\mathrm{T}}\left(\xi^{\mathrm{eq}}\right)=-(1 / \mathrm{V}) \,(\partial \mathrm{V} / \partial \mathrm{p})_{\mathrm{T}, \xi^{\text {eq }}} \nonumber \]

    \[\kappa_{\mathrm{T}}(\mathrm{A}=0)=\kappa_{\mathrm{T}}\left(\xi^{\mathrm{eq}}\right)-(1 / \mathrm{V}) \,\left[(\partial \mathrm{V} / \partial \xi)_{\mathrm{T}, \mathrm{p}}\right]^{2} \,(\partial \xi / \partial \mathrm{A})_{\mathrm{T}, \mathrm{p}} \nonumber \]

    Because \((\partial \mathrm{A} / \partial \xi)_{\mathrm{T}, \mathrm{p}}<0\), for all stable systems, \(\kappa_{\mathrm{T}}(\mathrm{A}=0)>\kappa_{\mathrm{T}}\left(\xi^{\mathrm{eq}}\right)\). According therefore to equation (e) the volume decrease accompanying a given change in pressure is more dramatic under condition that \(\mathrm{A} = 0\) than under the condition where \(\xi\) remains constant at \(\xi^{\mathrm{eq}}\) [4]. Both \(\kappa_{\mathrm{T}}(\mathrm{A}=0)\) and \(\kappa_{\mathrm{T}}\left(\xi^{\mathrm{eq}}\right)\) are volume intensive properties of a solution [5].

    Footnotes

    [1] The contrast between the two conditions is familiar to anyone who has dived into a swimming pool and “got it wrong”. Hitting the wall of water is similar to the conditions for\(\mathrm{K}_{\mathrm{T}}(\xi)\) whereas for a good dive the conditions resemble \(\mathrm{K}_{\mathrm{T}}(\mathrm{A}=0)\); the water molecules move apart to allow a smooth entry into the water.

    [2] Consider \(\left(\frac{\partial^{2} \mathrm{G}}{\partial \mathrm{p} \, \mathrm{d} \xi}\right)=\left(\frac{\partial^{2} \mathrm{G}}{\partial \xi \, \mathrm{dp}}\right)\). Then, \(-\left(\frac{\partial \mathrm{A}}{\partial \mathrm{p}}\right)_{\mathrm{T}, \xi}=\left(\frac{\partial \mathrm{V}}{\partial \xi}\right)_{\mathrm{T}, \mathrm{p}}\)

    [3] \(\mathrm{K}_{\mathrm{T}}=\left[\mathrm{m}^{3} \mathrm{~Pa}^{-1}\right] ; \kappa_{\mathrm{T}}=\left[\mathrm{Pa}^{-1}\right]\)

    [4] Equation (e) forms the basis of the pressure-jump fast reaction technique. A rapid change in pressure produces a “frozen” system which relaxes to the equilibrium state at a rate characteristic of the system.

    [5] For information concerning \(\mathrm{D}_{2}\mathrm{O}(\ell)\), see R. A. Fine and F. J. Millero, J.Chem.Phys.,1975,63,89.


    This page titled 1.7.13: Compressions- Isothermal- Equilibrium and Frozen is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.