Skip to main content
Chemistry LibreTexts

1.7.6: Compressions- Isentropic- Neutral Solutes

  • Page ID
    373659
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Granted that \(\phi\left(K_{\mathrm{Sj}} ; \text { def }\right)\) has been measured for solutions containing neutral solutes (at defined \(\mathrm{T}\) and \(\mathrm{p}\)), interesting patterns emerge for the dependences of \(\phi\left(\mathrm{K}_{\mathrm{Sj}} ; \operatorname{def}\right)\) on molality \(\mathrm{m}_{j}\) and on solute \(j\). Further these dependences are readily extrapolated (geometrically) to infinite dilution to yield estimates of \(\phi\left(K_{\mathrm{S}_{j}} ; \operatorname{def}\right)^{\infty}\). These comments apply to solutions of neutral solutes in both aqueous and non-aqueous solutions; e.g. solutions in propylene carbonate [1] and aqueous solutions of carbohydrates [2].

    For dilute solutions of neutral solutes \(\phi\left(K_{\mathrm{Sj}} ; \text { def }\right)\) is often approximately a linear function of the molality \(\mathrm{m}_{j}\).

    \[\text { Thus } \phi\left(\mathrm{K}_{\mathrm{S}_{\mathrm{j}}} ; \text { def }\right)=\phi\left(\mathrm{K}_{\mathrm{S}_{\mathrm{j}}} ; \text { def }\right)^{\infty}+\mathrm{b}_{\mathrm{KS}} \,\left(\mathrm{m}_{\mathrm{j}} / \mathrm{m}^{0}\right) \nonumber \]

    For aqueous solutions containing ureas, acetamides and \(\alpha,\omega\)-alkanediols, the slope \(b_{\mathrm{KS}}\) is positive. For dextrose(aq), sucrose(aq), urea(aq) and thiourea(aq) φ(; ) K def Sj ∞ is negative. In contrast φ(; ) K def Sj ∞ is positive for dioxan(aq) and acetamide(aq). In other words \(\phi\left(K_{\mathrm{S}_{j}} ; \operatorname{def}\right)^{\infty}\) is characteristic of the solute [3,4]. Group additivity schemes are discussed for \(\phi\left(K_{\mathrm{S}_{j}} ; \operatorname{def}\right)^{\infty}\) with respect to glycylpeptides(aq) [5], amino acids(aq) [6-8] and alcohols [9-11]. With increase in temperature \(\phi\left(K_{\mathrm{S}_{j}} ; \operatorname{def}\right)^{\infty}\) for amino acids(aq) [8] and glycyl dipeptides(aq) [12,13] increases. Particularly interesting in terms of solute-water interactions is the study reported by Galema et al [14, 15] who comment on the calculation of \(\phi\left(K_{\mathrm{Sj}} ; \text { def }\right)\) for solute-\(j\) using equation (b).

    \[\mathrm{K}_{\mathrm{sj}}(\mathrm{aq} ; \operatorname{def})=\phi\left(\mathrm{K}_{\mathrm{sj}} ; \operatorname{def}\right)+\mathrm{m}_{\mathrm{j}} \,\left[\partial \phi\left(\mathrm{K}_{\mathrm{s} j} ; \operatorname{def}\right) / \partial \mathrm{m}_{\mathrm{j}}\right]_{\mathrm{T}, \mathrm{p}} \nonumber \]

    This study confirmed the importance of the stereochemistry of carbohydrates on their hydration. A clear contrast is drawn between those solutes where the hydrophilic groups match and mismatch into the three dimensionally hydrogen - bonded structure of liquid water. With increase in solute concentration, the dependence of \(\mathrm{K}_{\mathrm{Sj}}(\mathrm{aq} ; \text { def })\) on composition is non-linear [16]. For amines(aq) \(\mathrm{K}_{\mathrm{Sj}}(\mathrm{aq} ; \text { def })\) passes through minima [16].

    Chalikian discusses the isentropic compression of a wide range of solutes with reference to group contributions [17], the discussion being extended to proteins [18] and oligopeptides[19].

    Footnotes

    [1] H. Høiland, J. Solution Chem., 1977, 6, 291.

    [2] P. J. Bernal and W. A. Van Hook, J. Chem. Thermodyn., 1986,18,955.

    [3] A. Lo Surdo, C. Shin and F. J. Millero, J. Chem. Eng. Data, 1978, 23, 197.

    [4] F. Franks, J. R. Ravenhill and D. S. Reid, J Solution Chem.,1972, 1,3.

    [5] M. Iqbal and R. E. Verrall, J.Phys.Chem.,1987,91,967.

    [6] D. P. Kharakoz, J.Phys.Chem.,1991,95,5634.

    [7] F. J. Millero, A. Lo Surdo and C. Shin, J.Phys.Chem.,1978,82,784.

    [8] T. V. Chalikian, A. P. Sarvazyan, T. Funck, C. A. Cain and K. J. Breslauer, J. Phys. Chem., 1994, 98, 321.

    [9] M. Kikuchi, M. Sakurai and K. Nitta, J. Chem. Eng. Data, 1995,40,935

    [10] M. Sakurai, K. Nakamura, K. Nitta and N. Takenaka, J. Chem. Eng. Data, 1995,40,301.

    [11] T. Nakajima, T. Komatsu and T. Nakagawa, Bull. Chem. Soc Jpn., 1975,48,788.

    [12] G. R. Hedwig, H. Hoiland and E. Hogseth, J. Solution Chem.,1996,25,1041.

    [13] G. R. Hedwig, J. D. Hastie and H. Hoiland, J. Solution Chem.,1996,25,615.

    [14] S. A. Galema and H. Høiland, J. Phys. Chem., 1991, 95, 5321.

    [15] S. A. Galema, J. B. F. N. Engberts, H. Hoiland and G. M. Forland, J. Phys. Chem., 1993, 97, 6885.

    [16] M. Kaulgud and K. J. Patil, J. Phys. Chem., 1974,78,714.

    [17] T. V. Chalikian, J. Phys. Chem.B,2001,105,12566.

    [18] N Taulier and T.V. Chalikian, Biochem. Biophys. Acta, 2002,1595,48.

    [19] A. W.Hakin, H. Hoiland and G. R. Hedwig, Phys. Chem. Chem. Phys.,2000,2,4850.


    This page titled 1.7.6: Compressions- Isentropic- Neutral Solutes is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.