Skip to main content
Chemistry LibreTexts

1.7.1: Compressions and Expansions- Liquids

  • Page ID
    373608
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The isothermal compressions of solutions and liquids have been extensively studied and the subject has a remarkable history. The term compression, symbol \(\mathrm{K}\) describes the sensitivity of the volume of a system to an isothermal change in pressure, \((\partial V / \partial p)\). Reference is usually made to the voyage made by HMS Challenger and the report of experiments undertaken by Tait into the compression of water [1-3]. Kell summarises various equations which have been proposed describing the isothermal dependence of the molar volume of water on pressure [4]; see also references [5,6].

    The dependence of the volume of water(\(\ell\)) at low pressures and at a given temperature on pressure can be represented by equation (a) where \(\mathrm{A}\) and \(\mathrm{B}\) are constants.

    \[[\mathrm{V}(\text { ref })-\mathrm{V}] / \mathrm{V}(\text { ref }) \, \mathrm{p}=\mathrm{A} /(\mathrm{B}+\mathrm{p}) \nonumber \]

    Here \(\mathrm{V}(\text{ref})\) is the volume ‘at zero pressure’, usually ambient pressure (i.e. approx \(105 \mathrm{~N m}^{-2}\)). This equation often called the Tait equation [4] has the form shown in equation (b).

    \[-\left(1 / \mathrm{V}^{0}\right) \,(\partial \mathrm{V} / \partial \mathrm{p})=\mathrm{A} /(\mathrm{B}+\mathrm{p}) \nonumber \]

    \[\text { Alternatively [4] } \mathrm{V}=\mathrm{V}^{0}\{1-\mathrm{A} \, \ln [(\mathrm{B}+\mathrm{p}) / \mathrm{B}]\} \nonumber \]

    The challenge of measuring the isothermal compression of liquids has been taken up by many investigators; e.g. references [7-12]. The isothermal compressions of a liquid \(\mathrm{K}_{\mathrm{T}}\) is defined by equation (d) [13].

    \[\mathrm{K}_{\mathrm{T}}=-(\partial \mathrm{V} / \partial \mathrm{p})_{\mathrm{T}} \nonumber \]

    The isothermal compressibility is given by equation (e) [14].

    \[\kappa_{\mathrm{T}}=-\mathrm{V}^{-1} \,(\partial \mathrm{V} / \partial \mathrm{p})_{\mathrm{T}} \nonumber \]

    For all thermodynamic equilibrium states, both \(\mathrm{K}_{\mathrm{T}}\) and \(\kappa_{\mathrm{T}}\) are positive variables. A related variable is the isochoric thermal pressure coefficient, \((\partial p / \partial T)_{v}\).[15]

    We develop the story in the context of systems containing two liquid components. For a closed system containing \(\mathrm{n}_{1}\) and \(\mathrm{n}_{2}\) moles of chemical substances 1 and 2, the Gibbs energy is a dependent variable and the variables \(\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{1}, \mathrm{n}_{2}\right]\) are the independent variables. Temperature \(\mathrm{T}\) is the thermal potential; pressure \(\mathrm{p}\) is the mechanical variable. The number of thermodynamic variables necessary to define the system is established using the Gibbs Phase Rule [16]. For a closed system (at defined \(\mathrm{T}\) and \(\mathrm{p}\)) at thermodynamic equilibrium the composition/organisation is represented by \(\xi^{e q}\). The affinity for spontaneous change is zero consistent with the Gibbs energy being a minimum; equation (f).

    \[\mathrm{A}=-(\partial \mathrm{G} / \partial \xi)_{\mathrm{T}, \mathrm{p}}^{\mathrm{eq}}=0 \nonumber \]

    The Gibbs energy, volume and entropy of a solution at equilibrium are state variables. We contrast these properties with those properties which are associated with a process (pathway). Thus we contrast the state variable V with an unspecified compression of a solution. We need to define the path followed by the system when the pressure is changed. The Gibbs energy of a closed system at thermodynamic equilibrium (where the affinity for spontaneous change is zero and where the molecular composition/organisation is characterised by \(\xi^{e q}\)) is described by equation (g).

    \[\mathrm{G}=\mathrm{G}\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{~A}=0\right] \nonumber \]

    The same state is characterised by the equilibrium volume and equilibrium entropy by equations (h) and (i) respectively.

    \[\mathrm{V}=\mathrm{V}\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{~A}=0\right] \nonumber \]

    \[\mathrm{S}=\mathrm{S}\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{~A}=0\right] \nonumber \]

    We use two intensive variables, \(\mathrm{T}\) and \(\mathrm{p}\), in the definition of extensive variables \(\mathrm{G}\), \(\mathrm{V}\) and \(\mathrm{S}\). When the pressure is increased by finite increments from \(\mathrm{p}\) to (\(\mathrm{p} + \Delta \mathrm{p}\)), the volume changes in finite increments from \(\mathrm{V}\) to (\(\mathrm{V} + \Delta \mathrm{V}\)). For an important pathway, the temperature is constant. However to satisfy the condition that the affinity for spontaneous change \(\mathrm{A}\) is zero, the molecular organisation/composition \(\xi\) changes. The volume at pressure (\(\mathrm{p} + \Delta \mathrm{p}\)) is defined using equation (j).

    \[\mathrm{V}=\mathrm{V}\left[\mathrm{T},(\mathrm{p}+\Delta \mathrm{p}), \mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{~A}=0\right] \nonumber \]

    In principle we plot the volume as a function of pressure at constant temperature, \(\mathrm{n}_{1}\), \(\mathrm{n}_{2}\), and at ‘\(\mathrm{A} = 0\)’. The gradient of the plot defined by equation (h) yields the equilibrium isothermal compression, \(\mathrm{K}_{\mathrm{T}}(\mathrm{A}=0)\); equation (k)

    \[\mathrm{K}_{\mathrm{T}}(\mathrm{A}=0)=-(\partial \mathrm{V} / \partial \mathrm{p})_{\mathrm{T}, \mathrm{A}=0} \nonumber \]

    \(\mathrm{K}_{\mathrm{T}}(\mathrm{A} = 0)\) characterises the state defined by the set of variables, \(\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{~A}=0\right]\).

    We turn our attention to another property starting with a system having a volume defined by equation (h). The system is perturbed by a change in pressure from \(\mathrm{p}\) to (\(\mathrm{p} + \Delta \mathrm{p}\)) in an equilibrium displacement. However on this occasion we require that the entropy of the system remains constant at a value defined by equation (i). In principle we plot the volume \(\mathrm{V}\) as a function of pressure at constant \(\mathrm{n}_{1}\), \(\mathrm{n}_{2}\), at ‘\(\mathrm{A}=0\)’ and at a constant entropy defined by equation (i). The gradient of the plot at the point where the volume is defined by equation (g) yields the equilibrium isentropic compression \(\mathrm{K}_{\mathrm{S}} (\mathrm{A}=0)\); equation (l) where isentropic = adiabatic and ‘at equilibrium’.

    \[\mathrm{K}_{\mathrm{S}}(\mathrm{A}=0)=-(\partial \mathrm{V} / \partial \mathrm{p})_{\mathrm{S}, \mathrm{A}=0} \nonumber \]

    The equilibrium state characterised by \(\mathrm{K}_{\mathrm{S}}(\mathrm{A}=0)\) is defined by the variables \(\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{~A}=0\right]\). In other words an isentropic volumetric property describes a solution defined in part by the intensive variables \(\mathrm{T}\) and \(\mathrm{p}\). Significantly the condition on the partial derivative in equation (l) is an extensive variable, entropy. For a stable phase \(\mathrm{K}_{\mathrm{S}}\) is positive.

    The arguments outlined above are repeated with respect to both isobaric equilibrium expansions \(\mathrm{E}_{\mathrm{p}}(\mathrm{A}=0)\) and isentropic equilibrium expansions, \(\mathrm{E}_{\mathrm{S}}(\mathrm{A}=0)\); equations (m) and (n).

    \[\mathrm{E}_{\mathrm{p}}(\mathrm{A}=0)=-(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}, \mathrm{A}=0} \nonumber \]

    \[\mathrm{E}_{\mathrm{S}}(\mathrm{A}=0)=-(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{S}, \mathrm{A}=0} \nonumber \]

    The (equilibrium) volume intensive isothermal \(\kappa_{\mathrm{T}}\) and isentropic \(\kappa_{\mathrm{S}}\) compressibilities are defined by equations (o) and (p) .

    \[\kappa_{\mathrm{T}}=-(1 / \mathrm{V}) \,(\partial \mathrm{V} / \partial \mathrm{p})_{\mathrm{T}}=\mathrm{K}_{\mathrm{T}} \, \mathrm{V}^{-1} \nonumber \]

    \[\kappa_{\mathrm{s}}=-(1 / \mathrm{V}) \,(\partial \mathrm{V} / \partial \mathrm{p})_{\mathrm{s}}=\mathrm{K}_{\mathrm{s}} \, \mathrm{V}^{-1} \nonumber \]

    In 1914 Tyrer reported isentropic and isothermal compressibilities for many liquids [9]. Equations (q) and (r) define two (equilibrium) expansibilities, isentropic and isobaric, volume intensive properties.

    \[\alpha_{\mathrm{s}}=(1 / \mathrm{V}) \,(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{s}}=\mathrm{E}_{\mathrm{S}} \, \mathrm{V}^{-1} \nonumber \]

    \[\alpha_{p}=(1 / V) \,(\partial \mathrm{V} / \partial \mathrm{T})_{p}=\mathrm{E}_{\mathrm{p}} \, \mathrm{V}^{-1} \nonumber \]

    Rowlinson and Swinton state that the property \(\alpha_{\mathrm{S}}\) is ‘of little importance’ [17]. The isobaric heat capacity per unit volume \(\sigma\) is the ratio \(\left[\mathrm{C}_{\mathrm{p}} / \mathrm{V}\right]\). A property of some importance is the difference between compressibilities, \(\delta\); equation (s).

    \[\delta=\kappa_{\mathrm{T}}-\kappa_{\mathrm{S}}=\mathrm{T} \,\left[\alpha_{\mathrm{p}}\right]^{2} \, \mathrm{V} / \mathrm{C}_{\mathrm{p}}=\mathrm{T} \,\left[\alpha_{p}\right]^{2} / \sigma \nonumber \]

    The property \(\sigma\) is given different symbols and names; e.g. volumetric specific heat. Here we identify \(\sigma\) as the thermal (or, heat) capacitance. The property \(\varepsilon\) is the difference between isobaric and isentropic expansibilities; equation (t).

    \[\varepsilon=\alpha_{p}-\alpha_{s}=\kappa_{T} \, \sigma / T \, \alpha_{p} \nonumber \]

    The Newton–Laplace equation is the starting point for the determination of isentropic compressibilities of liquids using sound speeds and densities; equation (u).

    \[u^{2}=\left(\kappa_{\mathrm{s}} \, \rho\right)^{-1} \nonumber \]

    The isentropic condition on \(\kappa_{\mathrm{S}}\) means that as a sound wave passes through a liquid the pressure and temperature fluctuate within each microscopic volume but the entropy remains constant.

    Footnotes

    [1] P. G. Tait, ‘Voyage of HMS Challenger’ (Physics and Chemistry), 1888, Volume II, Part IV, 76pp.

    [2] P. G. Tait, ‘Scientific Papers’, The University Press, Cambridge, 1898, Volume I, p.261.

    [3] See also N. E. Dorsey, Properties of Ordinary Water Substance, Reinhold, New York , 1940, pp. 207-253.

    [4] G.S Kell, Water A Comprehensive Treatise, ed. F Franks, Plenum Press, New York, 17972, Volume 1, pp. 382-383.

    [5] J. H. Dymond and R. Malhotra, Int. J. Thermophys., 1988, 9,941.

    [6] A. T. J. Hayward, Brit.J. Appl. Phys., 1967, 18,965.

    [7] G. A. Neece and D. R. Squire, J.Phys.Chem.,1968,72,128.

    [8] J. H. Hildebrand, Phys.Rev.,1929,34,649.

    [9] D. Tyrer, J. Chem. Soc., 1914,105,2534.

    [10] H. E. Eduljee, D. M. Newitt and K. E. Weale, J.Chem.Soc.,1951,3086.

    [11] L. A. K. Staveley, W. I. Tupman, and K. R. Hart, Trans. Faraday Soc.,1955,51,323.

    [12] D. N. Newitt and K.Weale, J.Chem. Soc.,1951,3092.

    [13] \(\mathrm{K}_{\mathrm{T}}=\left[\mathrm{m}^{3}\right] /\left[\mathrm{N} \mathrm{m}^{-2}\right]=\left[\mathrm{m}^{3} \mathrm{~Pa}^{-1}\right]\)

    [14] \(\mathrm{K}_{\mathrm{T}}=\frac{1}{\left[\mathrm{~m}^{3}\right]} \, \frac{\left[\mathrm{m}^{3}\right]}{[\mathrm{Pa}]}=\left[\mathrm{Pa}^{-1}\right]\)

    [15] \((\partial \mathrm{p} / \partial \mathrm{T})_{\mathrm{V}}=\left[\mathrm{Pa} \mathrm{K}{ }^{-1}\right]\)

    [16] Phase Rule; \(\mathrm{P} = 1\); \(\mathrm{C} = 2\). Hence \(\mathrm{F} = 3\). Then we define \(\mathrm{T}\), \(\mathrm{p}\) and mole fraction composition.

    [17] J. S. Rowlinson and F. L. Swinton, Liquids and Liquid Mixtures, Butterworths, London, 3rd edn., 1982, pp 16-17.


    This page titled 1.7.1: Compressions and Expansions- Liquids is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.