Skip to main content
Chemistry LibreTexts

1.5.2: Chemical Potentials- Gases

  • Page ID
    352533
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A given closed system contains gas \(j\) at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\). The chemical potential \(\mu_{\mathrm{j}}(\mathrm{g} ; \mathrm{T} ; \mathrm{p})\) is given by Equation \ref{a} where \(\mathrm{p}^{0}\) is the standard pressure and \(\mathrm{V}_{\mathrm{j}}^{*}(\mathrm{~T}, \mathrm{p})\) is the molar volume of the gas \(j\).

    \[\mu_{j}(g ; T ; p)= \mu_{j}^{0}(p f g ; T)+ R T \ln \left(\dfrac{p}{p^{0}}\right)+\int_{0}^{p}\left[V_{j}^{*}(T ; p)-\left(\dfrac{R T}{p}\right)\right] d p \label{a}\]

    \(\mathrm{V}_{\mathrm{j}}^{*}(\mathrm{~T} ; \mathrm{p})\) is the molar volume at pressure \(\mathrm{p}\) and temperature \(\mathrm{T}\). In the event that gas \(j\) has the properties of a perfect gas, the chemical potential is given by Equation \ref{b}.

    \[\mu_{j}(p f g ; T ; p)=\mu_{j}^{0}(p f g ; T)+R T \ln \left( \dfrac{p}{p^{0}} \right) \label{b}\]

    If gas \(j\) exists at mole fraction \(\mathrm{x}_{j}\) as one component of a mixture of \(\mathrm{k}\) gases the chemical potential of gas \(j\) is given by Equation \ref{c} where \(\mathrm{x}_{\mathrm{k}}\) is the set of mole fractions defining the composition of the mixture [1].

    \[ \mu_{\mathrm{j}}\left(\mathrm{g} ; \mathrm{T} ; \mathrm{p} ; \mathrm{x}_{\mathrm{k}}\right)= \mu_{\mathrm{j}}^{0}(\mathrm{~g} ; \mathrm{T})+\mathrm{R} \mathrm{T} \ln \left(\mathrm{x}_{\mathrm{j}} \mathrm{p} / \mathrm{p}^{0}\right) +\int_{\mathrm{o}}^{\mathrm{p}}\left[\mathrm{V}_{\mathrm{j}}\left(\mathrm{g} ; \mathrm{T} ; \mathrm{p} ; \mathrm{x}_{\mathrm{c}}\right)-\left(\dfrac{RT}{p}\right)\right] \mathrm{dp} \label{c}\]

    Here \(\mathrm{V}_{\mathrm{j}}\left(\mathrm{g} ; \mathrm{T} ; \mathrm{p} ; \mathrm{x}_{\mathrm{c}}\right)\) is the molar volume of gas \(j\) in the gaseous mixture.

    Footnote

    [1] M. L. McGlashan, Chemical Thermodynamics, Academic Press, London, 1979, page 184.


    This page titled 1.5.2: Chemical Potentials- Gases is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.