Skip to main content
Chemistry LibreTexts

1.2.2: Affinity for Spontaneous Reaction- Chemical Potentials

  • Page ID
    352500
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    For a closed system containing \(\mathrm{k}\) − chemical substances, the differential dependence of Gibbs energy on temperature, pressure and chemical composition, is given by the following equation.

    \[\mathrm{dG}=-\mathrm{S} \, \mathrm{dT}+\mathrm{V} \, \mathrm{dp}+\sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{k}}\left(\frac{\partial \mathrm{G}}{\partial \mathrm{n}_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{p}, \mathrm{n}(\mathrm{i} \neq \mathrm{j})} \, \mathrm{dn} \mathrm{j}_{\mathrm{j}}\]

    The condition at constant \(n(i \neq j)\) indicates that the amounts of each \(i\) chemical substance except chemical substance \(j\) is constant. The Gibbs energy of a closed system is a thermodynamic potential function; equation (b).

    \[\mathrm{dG}=-\mathrm{S} \, \mathrm{dT}+\mathrm{V} \, \mathrm{dp}-\mathrm{A} \, \mathrm{d} \xi\]

    Here \(\mathrm{A}\) is the affinity for spontaneous chemical reaction producing a change in extent of reaction, \(\mathrm{d} \xi\), in this case a change in composition. Further the chemical potential of chemical substance \(j\),

    \[\mu_{\mathrm{j}}=\left(\frac{\partial \mathrm{G}}{\partial \mathrm{n}_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{p}, \mathrm{n}(\mathrm{i} \neq \mathrm{j})}\]

    Comparison of equations (a) and (b) yields equation(d).

    \[-A \, d \xi=\sum_{j=1}^{j=k} \mu_{j} \, d n_{j}\]

    The stoichiometry in a chemical reaction for chemical substance \(j\), \(ν_{j}\) is defined such that \(ν_{j}\) is positive for products and negative for reactants; a mnemonic is ‘P for P’.

    \[v_{j}=d n_{j} / d \xi\]

    Hence the affinity for spontaneous change,

    \[A=-\sum_{j=1}^{j=k} v_{j} \, \mu_{j}\]

    But at equilibrium, the affinity for spontaneous change \(\mathrm{A}\) is zero.

    \[\text { Then, } \sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{k}} \mathrm{v}_{\mathrm{j}} \, \mu_{\mathrm{j}}^{\mathrm{eq}}=0\]

    Equation (g) in terms of its simplicity is misleading. Chemists are experts at assaying a system at equilibrium in order to determine the chemical substances present and their amounts. For example, an assay of a given system yields (for defined temperature and pressure) the amounts of un-dissociated acid \(\mathrm{CH}_{3}\mathrm{COOH}(\mathrm{aq})\), and the conjugate base \(\mathrm{CH}_{3}\mathrm{COO}^{−} (\mathrm{aq})\) and hydrogen ions at equilibrium. We write equation (g) as follows.

    \[-\mu^{\mathrm{eq}}\left(\mathrm{CH}_{3} \mathrm{COOH} ; \mathrm{aq}\right)+\mu^{\mathrm{eq}}\left(\mathrm{CH}_{3} \mathrm{COO}^{-} ; \mathrm{aq}\right)+\mu^{\mathrm{eq}}\left(\mathrm{H}^{+} ; \mathrm{aq}\right)=0\]

    Or, representing a balance of chemical potentials, (a useful approach)

    \[\mu^{\mathrm{eq}}\left(\mathrm{CH}_{3} \mathrm{COOH} ; \mathrm{aq}\right)=\mu^{\mathrm{eq}}\left(\mathrm{CH}_{3} \mathrm{COO}^{-} ; \mathrm{aq}\right)+\mu^{\mathrm{eq}}\left(\mathrm{H}^{+} ; \mathrm{aq}\right)\]

    The concept of a balance of equilibrium chemical potentials at thermodynamic equilibrium is often the starting point for a description of the properties of closed systems.


    This page titled 1.2.2: Affinity for Spontaneous Reaction- Chemical Potentials is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.