Skip to main content
Chemistry LibreTexts

1.1.10: Activity Coefficient- Two Neutral Solutes- Solute + Trace Solute i

  • Page ID
    352477
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A given solution is prepared using n1 moles of water(\(\lambda\)) together with \(n_{i}\) and \(n_{j}\) moles of neutral solutes \(i\) and \(j\) respectively at temperature \(\mathrm{T}\) and pressure \(p\) (which is close to the standard pressure \(p^{0}\)). The mass of water is \(\mathrm{n}_{1} \, \mathrm{M}_{1}\) where \(\mathrm{M}_{1}\) is the molar mass of water. Hence the molalities of solutes \(i\) and \(j\) are \(\mathrm{m}_{\mathrm{i}} \left(=\mathrm{n}_{\mathrm{i}} / \mathrm{n}_{1} \, \mathrm{M}_{1}\right)\) and \( \mathrm{m}_{\mathrm{j}}\left(=\mathrm{n}_{\mathrm{j}} / \mathrm{n}_{1} \, \mathrm{M}_{1}\right)\) respectively. The chemical potential of water in the aqueous solution \(\mu_{1}(\mathrm{aq})\) is related to the molality of solutes using equation (a) where \(\phi\) is the practical osmotic coefficient and \(\mu_{1}^{*}(\lambda)\) is the chemical potential water(\(\lambda\)) at the same \(\mathrm{T}\) and \(p\).

    \[\mu_{1}(\mathrm{aq})=\mu_{1}^{*}(\lambda)-\phi \, \mathrm{R} \, \mathrm{T} \, \mathrm{M}_{1} \,\left(\mathrm{m}_{\mathrm{i}}+\mathrm{m}_{\mathrm{j}}\right) \nonumber \]

    The chemical potentials of the two solutes, \(\mu_{\mathrm{i}}(\mathrm{aq})\) and \(\mu_{\mathrm{j}}(\mathrm{aq})\), are related to \(\mathrm{m}_{i}\) and \(\mathrm{m}_{j}\) together with corresponding activity coefficients, \(\gamma_{i}\) and \(\gamma_{j}\) using equations (b) and (c).

    \[\mu_{\mathrm{i}}(\mathrm{aq})=\mu_{\mathrm{i}}^{0}(\mathrm{aq})+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{m}_{\mathrm{i}} \, \gamma_{\mathrm{i}} / \mathrm{m}^{0}\right) \nonumber \]

    \[\mu_{\mathrm{j}}(\mathrm{aq})=\mu_{\mathrm{j}}^{0}(\mathrm{aq})+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{m}_{\mathrm{j}} \, \gamma_{\mathrm{j}} / \mathrm{m}^{0}\right) \nonumber \]

    Here \(\mu_{i}^{0}(\mathrm{aq})\) is the reference chemical potential for solute \(i\) in a solution where \(\mathrm{m}_{\mathrm{j}}=0 \mathrm{~mol} \mathrm{~kg}{ }^{-1}\), \(\mathrm{m}_{\mathrm{i}}=1 \mathrm{~mol} \mathrm{~kg}\) and \(\gamma_{i} = 1\). A similar definition operates for solute \(j\). For the mixed solution at all \(\mathrm{T}\) and \(p\),

    \[\operatorname{limit}\left(\mathrm{m}_{\mathrm{i}} \rightarrow 0 ; \mathrm{m}_{\mathrm{j}} \rightarrow 0\right) \gamma_{\mathrm{i}}=1 \nonumber \]

    \[\operatorname{limit}\left(\mathrm{m}_{\mathrm{i}} \rightarrow 0 ; \mathrm{m}_{\mathrm{j}} \rightarrow 0\right) \gamma_{\mathrm{j}}=1 \nonumber \]

    In these terms, the thermodynamic properties of solute \(i\) are not ideal as a consequence of \(i-i\), \(j-j\) and \(i-j\) solute-solute interactions. A similar comment concerns the thermodynamic properties of solute \(j\). With increase in molalities \(\mathrm{m}_{i}\) and \(\mathrm{m}_{j}\), so the extent to which the thermodynamic properties deviate from ideal increases; i.e. for solute \(j\), \(\gamma_{j} \neq 1\) and for solute \(i\), \(\gamma{i} \neq 1\). Such deviations can be understood in terms of \(i-i\), \(j-j\), and \(i-j\) solute-solute interactions.

    In some applications of this analysis, solute \(i\) is present in trace amounts and so \(\gamma_{i}\) in the absence of solute \(j\) would be close to unity. However as the molality of solute \(j\) is increased, the thermodynamic properties of solute \(i\) deviate increasingly from ideal as a result of solute \(i\) \(\rightleftarrows\) solute \(j\) interactions. This feature can be described [1,2] quantitatively using equation \((\mathrm{f})\) where \(\beta_{1}, \beta_{2} \ldots\) describe the role of pairwise i-j , triplet \(i-j-j \ldots \ldots\) solute-solute interactions.

    \[\ln \left(\gamma_{i}\right)=\beta_{1} \,\left(m_{j} / m^{0}\right)+\beta_{2} \,\left(m_{j} / m^{0}\right)^{2}+\ldots \ldots \nonumber \]

    Depending on the signs of the \(\beta\) - coefficients , added solute \(j\) can either stabilise or destabilise solute-\(i\); i.e. either lower or raise \(\mu_{i}(a q)\) relative to that in a solution having ideal thermodynamic properties.

    Footnotes

    [1] Based on an analysis suggested by C. Wagner, Thermodynamics of Alloys, Addison-Wesley, Reading, Mass., 1952, pages 19-22.

    [2] As quoted by G. N. Lewis and M. Randall, Thermodynamics, 2nd edn., revised by K. S. Pitzer and L Brewer, McGraw-Hill, New York, 1961, page 562.


    This page titled 1.1.10: Activity Coefficient- Two Neutral Solutes- Solute + Trace Solute i is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.