Skip to main content
Chemistry LibreTexts

1.1.6: Activity of Solvents- Classic Analysis

  • Page ID
    352473
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Thermodynamics underpins a classic topic in physical chemistry concerning the depression of freezing point, \(\Delta \mathrm{T}_{\mathrm{f}}\) of a liquid by added solute [1,2]. We note the superscript ‘id’ in equation (a) relating the activity of a solvent in an ideal solution, molality \(\mathrm{m}_{j}\).

    \[\ln \left(\mathrm{a}_{1}\right)^{\mathrm{id}}=-\mathrm{M}_{1} \, \mathrm{m}_{\mathrm{j}}=-\mathrm{M}_{1} \, \mathrm{n}_{\mathrm{j}} / \mathrm{n}_{1}^{0} \, \mathrm{M}_{1}=-\mathrm{n}_{\mathrm{j}} / \mathrm{n}_{1}^{0} \nonumber \]

    If the properties of a given aqueous solution are determined to a significant extent by solute-solute interactions, a determined molar mass for a given solute will be in error. Otherwise an observed depression is not a function of solute-solute interactions. Glasstone [2] comments that the ratio \(\Delta \mathrm{T}_{\mathrm{f}} / \mathrm{m}_{\mathrm{j}}\) decreases with increasing concentration of solute, emphasising that a simple analysis is only valid for dilute solutions. Nevertheless the general idea is that the depression for a given mj is not a function of the hydration of a solute. Barrow [3] noted that the ratio \(\Delta \mathrm{T}_{\mathrm{f}} / \mathrm{m}_{\mathrm{j}}\) for mannitol(aq) in very dilute solutions [4] is effectively constant. A similar opinion is advanced by Adam [5] who nevertheless comments on the importance of the condition ’dilute solution’ in a determination of the molar mass of a given solute.

    In summary, classic physical chemistry emphasises the importance of the superscript ‘id’ in equation (a). For very dilute solutions in a given solvent \(\ln \left(a_{1}\right)\) is linear function of \(\mathrm{m}_{j}\), leading to description of such properties as ‘depression of freezing point ‘ and ‘elevation of boiling point ’ under the heading ‘colligative properties. Only the molality of solute mj is important; solute-solute interactions and hydration characteristics of solutes apparently play no part in determining these colligative properties.

    The key to these statements is provided by the Gibbs-Duhem equation. For a solution prepared using 1 kg of water(\(\lambda\)) and \(\mathrm{m}_{j}\) moles of a simple solute \(j\), the Gibbs energy is given by equation (b).

    \[\mathrm{G}(\mathrm{aq})=\left(1 / \mathrm{M}_{1}\right) \, \mu_{1}(\mathrm{aq})+\mathrm{m}_{\mathrm{j}} \, \mu_{\mathrm{j}}(\mathrm{aq}) \nonumber \]

    Then, \(\mathrm{G}(\mathrm{aq})=\left(1 / \mathrm{M}_{1}\right) \,\left[\mu_{1}^{*}(\lambda)-\phi \, \mathrm{R} \, \mathrm{T} \, \mathrm{M}_{1} \, \mathrm{m}_{\mathrm{j}}\right]\)

    \[+\mathrm{m}_{\mathrm{j}} \,\left[\mu_{\mathrm{j}}^{0}\left(\mathrm{aq} ; \mathrm{id} ; \mathrm{m}_{\mathrm{j}}=1\right)+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{m}_{\mathrm{j}} \, \gamma_{\mathrm{j}} / \mathrm{m}^{0}\right)\right] \text { (c) } \nonumber \]

    According to the Gibbs - Duhem Equation, the chemical potentials of solvent and solute are linked. At fixed \(\mathrm{T}\) and \(p\),

    \[\mathrm{n}_{1} \, \mathrm{d} \mu_{1}(\mathrm{aq})+\mathrm{n}_{\mathrm{j}} \, \mathrm{d} \mu_{\mathrm{j}}(\mathrm{aq})=0 \nonumber \]

    Or, \(\left(1 / \mathrm{M}_{1}\right) \, \mathrm{d}\left[\mu_{1}^{*}(\lambda)-\phi \, \mathrm{R} \, \mathrm{T} \, \mathrm{M}_{1} \, \mathrm{m}_{\mathrm{j}}\right]\)

    \[+\mathrm{m}_{\mathrm{j}} \, \mathrm{d}\left[\mu_{\mathrm{j}}^{0}\left(\mathrm{aq} ; \mathrm{id} ; \mathrm{m}_{\mathrm{j}}=1\right)+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{m}_{\mathrm{j}} \, \gamma_{\mathrm{j}} / \mathrm{m}^{0}\right)\right]=0 \nonumber \]

    \[\text { Or, } \quad-\mathrm{d}\left(\phi \, \mathrm{m}_{\mathrm{j}}\right)+\mathrm{m}_{\mathrm{j}} \, \mathrm{d} \ln \left(\mathrm{m}_{\mathrm{j}} \, \gamma_{\mathrm{j}} / \mathrm{m}^{0}\right)=0 \nonumber \]

    \[\text { Or, } \quad-\mathrm{d}\left(\phi \, \mathrm{m}_{\mathrm{j}}\right)+\mathrm{m}_{\mathrm{j}} \, \mathrm{d} \ln \left(\mathrm{m}_{\mathrm{j}} \, \gamma_{\mathrm{j}} / \mathrm{m}^{0}\right)=0 \nonumber \]

    \[\text { Hence, } \quad(\phi-1) \, \frac{\mathrm{dm}_{\mathrm{j}}}{\mathrm{m}_{\mathrm{j}}}+\mathrm{d} \phi=\mathrm{d} \ln \left(\gamma_{\mathrm{j}}\right) \nonumber \]

    The latter equation forms the basis of the oft-quoted statement that if the thermodynamic properties of a solute are ideal then so are the properties of the solvent. Similarly if the thermodynamic properties of the solute are ideal then so are the properties of the solvent.

    \[\text { From equation }(h), \phi=1+\frac{1}{m_{j}} \, \int_{0}^{m(j)} m_{j} \, d \ln \left(\gamma_{j}\right) \nonumber \]

    The importance of equation (i) emerges from the idea that \(\gamma_{j}\) describes the impact of solute-solute interactions on the properties of a given solution. If we can formulate an equation for \(\ln \left(\gamma_{j}\right)\) in terms of the properties of the solution, we obtain \(\phi\) from equation (i). If the properties of a real solution containing a neutral solute are not ideal, both \(\gamma_{j}\) and \(\phi\) are linked functions of the solute molality. Pitzer [6] suggests equations (j) and (k) for \(\ln \left(\gamma_{j}\right)\) and \(\phi\) in terms of solute molalities using two parameters, \(\lambda\) and \(\mu\).

    \[\ln \left(\gamma_{\mathrm{j}}\right)=2 \, \lambda \, \mathrm{m}_{\mathrm{j}}+3 \, \mu \,\left(\mathrm{m}_{\mathrm{j}}\right)^{2} \nonumber \]

    \[\phi-1=\lambda \, \mathrm{m}_{\mathrm{j}}+2 \, \mu \,\left(\mathrm{m}_{\mathrm{j}}\right)^{2} \nonumber \]

    For example in the case of mannitol(aq) and butan-1-ol(aq), Pitzer [6] suggests the following equations for \(\ln \left(\gamma_{j}\right)\).

    \[\text { For mannitol(aq) } \quad \ln \left(\gamma_{\mathrm{j}}\right)=-0.040 \, \mathrm{m}_{\mathrm{j}} \nonumber \]

    \[\text { For butan-1-ol(aq) } \ln \left(\gamma_{\mathrm{j}}\right)=-0.38 \, \mathrm{m}_{\mathrm{j}}+0.51 \,\left(\mathrm{m}_{\mathrm{j}}\right)^{2} \nonumber \]

    Guggenheim[7] using the mole fraction scale suggests equation (n) where \(\mathrm{A}\) and \(\mathrm{B}\) are characteristic of the solute.

    \[1-\phi=A \, x_{j}+B \,\left(x_{j}\right)^{2} \nonumber \]

    Prigogine and Defay [1] comment that the non-ideal properties of solutions can be understood in terms of the different molecular sizes of solute and solvent. A similar comment is made by Robinson and Stokes [8] who use a parameter describing the ratio of molar volumes of solute and solvent. The extent to which the properties of a solution differ from ideal can often be traced to a variety of causes including solvation, molecular size and shape.

    Footnotes

    [1] I. Prigogine and R. Defay, Chemical Thermodynamics, trans. D. H. Everett, Longmans Green , London 1953.

    [2] S. Glasstone, Physical Chemistry, McMillan, London, 2nd. edn., 1948,page 645.

    [3] G. M. Barrow, Physical Chemistry, McGraw-Hill, New York, 4th edn.,1979, page 298.

    [4] L. H. Adams, J. Am. Chem. Soc.,1915,37,481.

    [5] Neil Kensington Adam, Physical Chemistry, Oxford,1956, page 284.

    [6] K. S. Pitzer, Thermodynamics , McGraw-Hill, New York, 3rd. edn., 1995.

    [7] E. A. Guggenheim, Thermodynamics, North-Holland Publishing Co., Amsterdam, 1950, pages 252-3

    [8] R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworths, London 2nd edn. Revised, 1965.


    This page titled 1.1.6: Activity of Solvents- Classic Analysis is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.