Skip to main content
Chemistry LibreTexts

1.1.1: Acid Dissociation Constants- Weak Acids- Debye-Huckel Limiting Law

  • Page ID
    352468
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    For a weak acid HA in aqueous solution at temperature T and pressure p (which is ambient pressure and so close to the standard pressure) the following chemical equilibrium is established.

    \[\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) \nonumber \]

    The r.h.s. of equation (1.1.3) describes a 1:1 ‘salt’ in aqueous solution. At equilibrium (i.e. at a minimum in Gibbs energy), the thermodynamic description of the solution takes the following form.

    \[\mu^{e q}(\mathrm{HA} ; \mathrm{aq} ; \mathrm{T} ; \mathrm{p})+\mu^{\mathrm{eq}}\left(\mathrm{H}_{2} \mathrm{O} ; \mathrm{aq} ; \mathrm{T} ; \mathrm{p}\right)=\mu^{\mathrm{eq}}\left(\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{A}^{-} ; \mathrm{aq} ; \mathrm{T} ; \mathrm{p}\right) \nonumber \]

    We express µeq(H2O;aq;T;p) in terms of the practical osmotic coefficient φ for the solution.

    \[\mu^{e q}\left(\mathrm{H}_{2} \mathrm{O} ; \mathrm{aq} ; \mathrm{T} ; \mathrm{p}\right)=\mu^{*}\left(\mathrm{H}_{2} \mathrm{O} ; \lambda ; \mathrm{T} ; \mathrm{p}\right)-\phi \, \mathrm{R} \, \mathrm{T} \, \mathrm{M}_{1} \,\left[\mathrm{m}(\mathrm{HA})+2 \, \mathrm{m}_{\mathrm{j}}\right]^{e q} \nonumber \]

    Here mj is the molality of the ‘salt’ H3O+A-. The latter yields 2 moles of ions for each mole of H3O+A-. A full description of the solution takes the following form.

    \[\begin{aligned}
    \mu^{0}(\mathrm{HA} ; \mathrm{aq})+& \mathrm{R} \, \mathrm{T} \, \ln \left[\mathrm{m}(\mathrm{HA}) \, \gamma(\mathrm{HA}) / \mathrm{m}^{0}\right]^{e q} \\
    &+\mu^{*}\left(\mathrm{H}_{2} \mathrm{O} ; \lambda\right)-\phi \, \mathrm{R} \, \mathrm{T} \, \mathrm{M}_{1} \,\left[\mathrm{m}(\mathrm{HA})+2 \, \mathrm{m}_{\mathrm{j}}\right]^{\mathrm{eq}} \\
    &=\mu^{0}\left(\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{A}^{-} ; \mathrm{aq}\right)+2 \, \mathrm{R} \, \mathrm{T} \, \ln \left[\mathrm{m}_{\mathrm{j}} \, \gamma_{\pm}\right]^{\mathrm{eq}} \quad
    \end{aligned} \nonumber \]

    The practical osmotic coefficient φ describes the properties of solvent, water in the aqueous solution; γ± is the mean ionic activity coefficient for the ‘salt’ H3O+A-. By definition, if ambient pressure p is close to the standard pressure p0, the standard Gibbs energy of acid dissociation,

    \[\begin{gathered}
    \Delta_{\mathrm{d}} \mathrm{G}^{0}=\mu^{0}\left(\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{A}^{-} ; \mathrm{aq} ; \mathrm{T} ; \mathrm{p}\right)-\mu^{0}(\mathrm{HA} ; \mathrm{aq} ; \mathrm{T} ; \mathrm{p})-\mu^{0}\left(\mathrm{H}_{2} \mathrm{O} ; \lambda ; \mathrm{T} ; \mathrm{p}\right) \\
    =-\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{K}_{\mathrm{A}}^{0}\right)
    \end{gathered} \nonumber \]

    \(\mathrm{K}_{\mathrm{A}}^{0}\) is the acid dissociation constant. Combination of equations (1.1.4) and (1.1.5) yields equation (1.1.6).

    \[\mathrm{K}_{\mathrm{A}}^{0} = \frac{\left[\mathrm{m}\left(\mathrm{H}_{3} \mathrm{O}^{+} \, \mathrm{A}^{-}\right)^{\mathrm{cq}} \, \gamma_{\pm}\left(\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{A}^{-}\right)^{\mathrm{eq}} / \mathrm{m}^{0}\right]^{2} \, \exp \left[\phi \, \mathrm{M}_{1} \,\left(\mathrm{m}(\mathrm{HA})+2 \, \mathrm{m}_{\mathrm{j}}\right)\right]^{\mathrm{cq}}}{\left[\mathrm{m}(\mathrm{HA}) \, \gamma(\mathrm{HA}) / \mathrm{m}^{0}\right]^{\mathrm{eq}}} \nonumber \]

    For dilute aqueous solutions, several approximations are valid. The exponential term and γ(HA)eq are close to unity. There are advantages in defining a quantity \(\mathrm{K}_{\mathrm{A}}^{0}\) (app) . Further, γ±(H3O+A-) is obtained using the Debye - Huckel Limiting Law, DHLL.

    By definition,

    \[\mathrm{K}_{\mathrm{A}}(\mathrm{app})=\left[\mathrm{m}\left(\mathrm{H}^{+} \mathrm{A}^{-}\right)^{\mathrm{eq}}\right]^{2} / \mathrm{m}(\mathrm{HA})^{\mathrm{eq}} \, \mathrm{m}^{0} \nonumber \]

    Then

    \[\ln \mathrm{K}_{\mathrm{A}}(\operatorname{app})=\ln \mathrm{K}_{\mathrm{A}}^{0}+2 \, \mathrm{S}_{\gamma}\left(\mathrm{I} / \mathrm{m}^{0}\right)^{1 / 2} \nonumber \]

    In other words, with increase in ionic strength \(I\), \(\mathrm{K}_{\mathrm{A}}(\operatorname{app})\) increases as a consequence of ion - ion interactions which stabilize the dissociated form of the acid.


    This page titled 1.1.1: Acid Dissociation Constants- Weak Acids- Debye-Huckel Limiting Law is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.