Skip to main content
Chemistry LibreTexts

22.4: Partition Functions and Average Energies at High Temperatures

  • Page ID
    151966
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    It is enlightening to find the integral approximations to the partition functions and average energies for our simple quantum-mechanical models of translational, rotational, and vibrational motions. In doing so, however, it is important to remember that the use of integrals to approximate Boltzmann-equation sums assumes that there are a large number of energy levels, \(\epsilon_i\), for which \(\epsilon_i\ll kT\). If we select a high enough temperature, the energy levels for any motion will always satisfy this condition. The energy levels for translational motion satisfy this condition even at sub-ambient temperatures. This is the reason that Maxwell’s derivation of the probability density function for translational motion is successful.

    Rotational motion is an intermediate case. At sub-ambient temperatures, the classical-mechanical derivation can be inadequate; at ordinary temperatures, it is a good approximation. This can be seen by comparing the classical-theory prediction to experimental values for diatomic molecules. For diatomic molecules, the classical model predicts a constant-volume heat capacity of \({5k}/{2}\) from \(3\) degrees of translational and \(2\) degrees of rotational freedom. Since this does not include the contributions from vibrational motions, constant-volume heat capacities for diatomic molecules must be greater than \({5k}/{2}\) if both the translational and rotational contributions are accounted for by the classical model. For diatomic molecules at \(298\) K, the experimental values are indeed somewhat larger than \({5k}/{2}\). (Hydrogen is an exception; its value is \(2.47\ k\).)

    Vibrational energies are usually so big that only a minor fraction of the molecules can be in higher vibrational levels at reasonable temperatures. If we try to increase the temperature enough to make the high-temperature approximation describe vibrational motions, most molecules decompose. Likewise, electronic partition functions must be evaluated from the defining equation.

    The high-temperature limiting average energies can also be calculated from the Boltzmann equation and the appropriate quantum-mechanical energies. Recall that we find the following quantum-mechanical energies for simple models of translational, rotational, and vibrational motions:

    Translation

    \[\epsilon^{\left(n\right)}_{\mathrm{trans}}=\frac{n^2h^2}{8m{\ell }^2} \nonumber \]

    (\(\mathrm{n\ =\ 1,\ 2,\ 3,\dots .}\) Derived for a particle in a box)

    Rotation

    \[\epsilon^{\left(m\right)}_{\mathrm{rot}}=\frac{m^2h^2}{8{\pi }^2I} \nonumber \] (\(\mathrm{m\ =\ 1,\ 2,\ 3,\ \dots .}\) Derived for rotation about one axis—each energy level is doubly degenerate)

    Vibration

    \[\epsilon^{\left(n\right)}_{\mathrm{vibration}}=h\nu \left(n+\frac{1}{2}\right) \nonumber \] (\(\mathrm{n\ =\ 0,\ 1,\ 2,\ 3,\dots .}\) Derived for simple harmonic motion in one dimension)

    When we assume that the temperature is so high that many \(\epsilon_i\) are small compared to \(kT\), we find the following high-temperature limiting partition functions for these motions:

    \[z_{\mathrm{translation}}=\sum^{\infty }_{n=1}{\mathrm{exp}}\left(\frac{-n^2h^2}{8m{\ell }^2kT}\right)\approx \int^{\infty }_0{\mathrm{exp}}\left(\frac{-n^2h^2}{8m{\ell }^2kT}\right)dn={\left(\frac{2\pi mkT{\ell }^2}{h^2}\right)}^{1/2} \nonumber \]

    \[z_{\mathrm{rotation}}=\sum^{\infty }_{m=1}{\mathrm{2\ exp}}\left(\frac{-m^2h^2}{8{\pi }^2IkT}\right)\approx 2\int^{\infty }_0{\mathrm{exp}}\left(\frac{-m^2h^2}{8{\pi }^2IkT}\right)dn={\left(\frac{8{\pi }^3IkT}{h^2}\right)}^{1/2} \nonumber \] \[z_{\mathrm{vibration}}=\sum^{\infty }_{n=0}{\mathrm{exp}}\left(\frac{-h\nu }{kT}\left(n+\frac{1}{2}\right)\right)\approx \int^{\infty }_0{\mathrm{exp}}\left(\frac{-h\nu }{kT}\left(n+\frac{1}{2}\right)\right)dn=\frac{kT}{h\nu }\mathrm{exp}\ \left(\frac{-h\nu }{2kT}\right) \nonumber \]

    We can then calculate the average energy for each mode as

    \[\left\langle \epsilon \right\rangle =z^{-1}\int^{\infty }_0{\epsilon_n}{\mathrm{exp} \left(\frac{-\epsilon_n}{kT}\right)\ }dn \nonumber \]

    and find

    \[\begin{align*} \left\langle \epsilon_{\mathrm{translation}}\right\rangle &=z^{-1}_{\mathrm{translation}}\int^{\infty }_0{\left(\frac{n^2h^2}{8m{\ell }^2}\right)\mathrm{\ exp}}\left(\frac{-n^2h^2}{8m{\ell }^2kT}\right)dn \\[4pt] &=\frac{kT}{2} \\[4pt] \left\langle \epsilon_{\mathrm{rotation}}\right\rangle &=z^{-1}_{\mathrm{rotation}}\int^{\infty }_0{2\left(\frac{m^2h^2}{8{\pi }^2I}\right)\mathrm{\ exp}}\left(\frac{-m^2h^2}{8{\pi }^2IkT}\right)dm \\[4pt] &=\frac{kT}{2} \\[4pt] \left\langle \epsilon_{\mathrm{vibration}}\right\rangle &=z^{-1}_{\mathrm{vibration}} \times \int^{\infty }_0{h\nu \left(n+\frac{1}{2}\right) \mathrm{\ exp}}\left(\frac{-h\nu }{kT}\left(n+\frac{1}{2}\right)\right)dn \\[4pt] &=kT+\frac{h\nu }{2} \\[4pt] &\approx kT \end{align*} \nonumber \]

    where the last approximation assumes that \({h\nu }/{2}\ll kT\). In the limit as \(T\to 0\), the average energy of the vibrational mode becomes just \({h\nu }/{2}\). This is just the energy of the lowest vibrational state, implying that all of the molecules are in the lowest vibrational energy level at absolute zero.


    This page titled 22.4: Partition Functions and Average Energies at High Temperatures is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform.