Skip to main content
Chemistry LibreTexts

21.3: Deriving the Boltzmann Equation I

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    In Sections 20-10 and 20-14, we develop the relationship between the system entropy and the probabilities of a microstate, \(\rho \left({\epsilon }_i\right)\), and an energy level, \(P_i=g_i\rho \left({\epsilon }_i\right)\), in our microscopic model. We find

    \[\begin{align*} S &=-Nk\sum^{\infty }_{i=1}{P_i}{ \ln \rho \left({\epsilon }_i\right)\ } \\[4pt] &=-Nk\sum^{\infty }_{i=1}{g_i\rho \left({\epsilon }_i\right)}{ \ln \rho \left({\epsilon }_i\right)\ } \end{align*} \]

    For an isolated system at equilibrium, the entropy must be a maximum, and hence

    \[-\sum^{\infty }_{i=1}{g_i\rho \left({\epsilon }_i\right)}{ \ln \rho \left({\epsilon }_i\right)} \label{maxentropy} \]

    must be a maximum. We can use Lagrange’s method to find the dependence of the quantum-state probability on its energy. The \(\rho \left({\epsilon }_i\right)\) must be such as to maximize entropy (Equation \ref{maxentropy}) subject to the constraints

    \[1=\sum^{\infty }_{i=1}{P_i}=\sum^{\infty }_{i=1}{g_i\rho \left({\epsilon }_i\right)} \nonumber \]


    \[\left\langle \epsilon \right\rangle =\sum^{\infty }_{i=1}{P_i{\epsilon }_i}=\sum^{\infty }_{i=1}{g_i{\varepsilon }_i\rho \left({\epsilon }_i\right)} \nonumber \]

    where \(\left\langle \epsilon \right\rangle\) is the expected value of the energy of one molecule. The mnemonic function becomes

    \[F_{mn}=-\sum^{\infty }_{i=1}{g_i\rho \left({\epsilon }_i\right)}{ \ln \rho \left({\epsilon }_i\right)\ }+{\alpha }^*\left(1-\sum^{\infty }_{i=1}{g_i\rho \left({\epsilon }_i\right)}\right)+\beta \left(\left\langle \epsilon \right\rangle -\sum^{\infty }_{i=1}{g_i{\varepsilon }_i\rho \left({\epsilon }_i\right)}\right) \nonumber \]

    Equating the partial derivative with respect to \(\rho \left({\epsilon }_i\right)\) to zero, \[\frac{\partial F_{mn}}{\partial \rho \left({\epsilon }_i\right)}=-g_i{ \ln \rho \left({\epsilon }_i\right)\ }-g_i-{\alpha }^*g_i-\beta g_i{\epsilon }_i=0 \nonumber \]

    so that

    \[\rho \left({\epsilon }_i\right)={\mathrm{exp} \left(-{\alpha }^*-1\right)\ }{\mathrm{exp} \left(-\beta {\epsilon }_i\right)\ } \nonumber \]


    \[1=\sum^{\infty }_{i=1}{P_i}=\sum^{\infty }_{i=1}{g_i\rho \left({\epsilon }_i\right)} \nonumber \]

    the argument we use in Section 21.1 again leads to the partition function, \(z\), and the Boltzmann equation

    \[P_i=g_i\rho \left({\epsilon }_i\right)=z^{-1}g_i\ \mathrm{exp}\left(-\beta {\epsilon }_i\right) \nonumber \]

    This page titled 21.3: Deriving the Boltzmann Equation I is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.