# 18.5: Solutions to Schroedinger Equations for Harmonic Oscillators and Rigid Rotors

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

We can approximate the wavefunction for a molecule by partitioning it into wavefunctions for individual translational, rotational, vibrational, and electronic modes. The wavefunctions for each of these modes can be approximated by solutions to a Schrödinger equation that approximates that mode. Our objective in this chapter is to introduce the quantized energy levels that are found.

Translational modes are approximated by the particle in a box model that we discuss above.

Vibrational modes are approximated by the solutions of the Schrödinger equation for coupled harmonic oscillators. The vibrational motion of a diatomic molecule is approximated by the solutions of the Schrödinger equation for the vibration of two masses linked by a spring. Let the distance between the masses be $$r$$ and the equilibrium distance be $$r_0$$. Let the reduced mass of the molecule be $$\mu$$, and let the force constant for the spring be $$\lambda$$. From classical mechanics, the potential energy of the system is

$V\left(r\right)=\frac{\lambda {\left(r-r_0\right)}^2}{2} \nonumber$

and the vibrational frequency of the classical oscillator is $\nu =\frac{1}{2\pi }\sqrt{\frac{\lambda }{\mu }} \nonumber$

The Schrödinger equation is

$-\left(\frac{h^2}{8{\pi }^2\mu }\right)\frac{d^2\psi }{dr^2}+\frac{\lambda {\left(r-r_0\right)}^2}{2}\psi =E\psi \nonumber$

The solutions to this equation are wavefunctions and energy levels that constitute the quantum mechanical description of the classical harmonic oscillator. The energy levels are given by

$E_n=h\nu \left(n+\frac{1}{2}\right) \nonumber$

where the quantum numbers, $$n$$, can have any of the values $$n=0,\ 1,\ 2,\ 3,\ \dots .$$ The lowest energy level, that for which $$n=0$$, has a non-zero energy; that is,

$E_0={h\nu }/{2} \nonumber$

The quantum mechanical oscillator can have infinitely many energies, each of which is a half-integral multiple of the classical frequency, $$\nu$$. Each quantum mechanical energy corresponds to a quantum mechanical frequency:

${\nu }_n=\nu \left(n+\frac{1}{2}\right) \nonumber$

A classical rigid rotor consists of two masses that are connected by a weightless rigid rod. The rigid rotor is a dumbbell. The masses rotate about their center of mass. Each two-dimensional rotational motion of a diatomic molecule is approximated by the solutions of the Schrödinger equation for the motion of a rigid rotor in a plane. The simplest model assumes that the potential term is zero for all angles of rotation. Letting $$I$$ be the molecule’s moment of inertia and $$\varphi$$ be the rotation angle, the Schrödinger equation is

$-\left( \frac{h^2}{8\pi ^2I}\right) \frac{d^2\psi }{d \varphi ^2}=E\psi \nonumber$

The energy levels are given by

$E_m=\frac{m^2h^2}{8\pi ^2I} \nonumber$

where the quantum numbers, $$m$$, can have any of the values $$m=1,\ 2,\ 3,\ \dots .,$$(but not zero). Each of these energy levels is two-fold degenerate. That is, two quantum mechanical states of the molecule have the energy $$E_m$$.

The three-dimensional rotational motion of a diatomic molecule is approximated by the solutions of the Schrödinger equation for the motion of a rigid rotor in three dimensions. Again, the simplest model assumes that the potential term is zero for all angles of rotation. Letting $$\theta$$ and $$\varphi$$ be the two rotation angles required to describe the orientation in three dimensions, the Schrödinger equation is

$-\frac{h^2}{8{\pi }^2I}\left(\frac{1}{\mathrm{sin} \theta} \frac{\partial }{\partial \theta } \left(\mathrm{sin} \theta \frac{\partial \psi }{\partial \theta }\right)+\frac{1}{\mathrm{sin}^2 \theta }\frac{d^2\psi }{d{\varphi }^2}\right)=E\psi \nonumber$

The energy levels are given by

$E_J=\frac{h^2}{8{\pi }^2I}J\left(J+1\right) \nonumber$

where the quantum numbers, $$J$$, can have any of the values $$J=0,\ 1,\ 2\ ,3,\ \dots .$$ $$E_J$$ is $$\left(2J+1\right)$$-fold degenerate. That is, there are $$2J+1$$ quantum mechanical states of the molecule all of which have the same energy, $$E_J$$.

Equations for the rotational energy levels of larger molecules are more complex.

This page titled 18.5: Solutions to Schroedinger Equations for Harmonic Oscillators and Rigid Rotors is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform.