14.9: The Dependence of Chemical Potential on Other Variables
- Page ID
- 152677
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The chemical potential of a substance in a particular system is a function of all of the variables that affect the Gibbs free energy of the system. For component \(A\), we can express this by writing
\[{\mu }_A={\mu }_A\left(P,T,n_1,n_2,\dots ,n_A,\dots {,n}_{\omega }\right) \nonumber \]
for which the total differential is
\[d{\mu }_A={\left(\frac{\partial {\mu }_A}{\partial T}\right)}_PdT+{\left(\frac{\partial {\mu }_A}{\partial P}\right)}_TdP+\sum^{\omega }_{j=1}{{\left(\frac{\partial {\mu }_A}{\partial n_j}\right)}_{PT}dn_j} \nonumber \]
Recalling the definition of the chemical potential and the fact that the mixed second-partial derivatives of a state function are equal, we have
\[{\left(\frac{\partial {\mu }_A}{\partial T}\right)}_P={\left(\frac{\partial }{\partial T}\right)}_P{\left(\frac{\partial G}{\partial n_A}\right)}_{TP}={\left(\frac{\partial }{\partial n_A}\right)}_{TP}{\left(\frac{\partial G}{\partial T}\right)}_P=-{\left(\frac{\partial S}{\partial n_A}\right)}_{TP}=-{\overline{S}}_A \nonumber \] Similarly,
\[{\left(\frac{\partial {\mu }_A}{\partial P}\right)}_T={\left(\frac{\partial }{\partial P}\right)}_T{\left(\frac{\partial G}{\partial n_A}\right)}_{TP}={\left(\frac{\partial }{\partial n_A}\right)}_{TP}{\left(\frac{\partial G}{\partial P}\right)}_T={\left(\frac{\partial V}{\partial n_A}\right)}_{TP}={\overline{V}}_A \nonumber \] Thus, the total differential of the chemical potential for species \(A\) can be written as
\[d{\mu }_A=-{\overline{S}}_AdT+{\overline{V}}_AdP+\sum^{\omega }_{j=1}{{\left(\frac{\partial {\mu }_A}{\partial n_j}\right)}_{PT}dn_j} \nonumber \]
To illustrate the utility of this result, we can use it to derive the Clapeyron equation for equilibrium between two phases of a pure substance. In Chapter 12, we derived the Clayeyron equation using a thermochemical cycle. We can now use the total differential of the chemical potential to present essentially the same derivation using a simpler argument. Letting the two phases be \(\alpha\) and \(\beta\), the total differentials for a system that contains both phases becomes
\[d{\mu }_{\alpha }=-{\overline{S}}_{\alpha }dT+{\overline{V}}_{\alpha }dP+{\left(\frac{\partial {\mu }_{\alpha }}{\partial n_{\alpha }}\right)}_{PT}dn_{\alpha }+{\left(\frac{\partial {\mu }_{\alpha }}{\partial n_{\beta }}\right)}_{PT}dn_{\beta } \nonumber \] and \[d{\mu }_{\beta }=-{\overline{S}}_{\beta }dT+{\overline{V}}_{\beta }dP+{\left(\frac{\partial {\mu }_{\beta }}{\partial n_{\alpha }}\right)}_{PT}dn_{\alpha }+{\left(\frac{\partial {\mu }_{\beta }}{\partial n_{\beta }}\right)}_{PT}dn_{\beta } \nonumber \]
Since equilibrium between phases \(\alpha\) and \(\beta\) means that \({\mu }_{\alpha }={\mu }_{\beta }\), we have also that \(d{\mu }_{\alpha }=d{\mu }_{\beta }\) for any process in which the phase equilibrium is maintained. Moreover, \(\alpha\) and \(\beta\) are pure phases, so that \({\mu }_{\alpha }\) and \({\mu }_{\beta }\) are independent of \(n_{\alpha }\) and \(n_{\beta }\). Then
\[{\left(\frac{\partial {\mu }_{\alpha }}{\partial n_{\alpha }}\right)}_{PT}={\left(\frac{\partial {\mu }_{\beta }}{\partial n_{\alpha }}\right)}_{PT}={\left(\frac{\partial {\mu }_{\alpha }}{\partial n_{\beta }}\right)}_{PT}={\left(\frac{\partial {\mu }_{\beta }}{\partial n_{\beta }}\right)}_{PT}=0 \nonumber \]
Hence,
\[-{\overline{S}}_{\alpha }dT+{\overline{V}}_{\alpha }dP=-{\overline{S}}_{\beta }dT+{\overline{V}}_{\beta }dP \nonumber \]
and the rest of the derivation follows as before.