Skip to main content
Chemistry LibreTexts

10.4: Expressing Thermodynamic Functions with Independent Variables V and T

  • Page ID
    151721
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    If we choose \(V\) and \(T\) as the independent variables, we can express the differential of \(E\) as a function of \(V\) and \(T\). We also have the differential relationship \(dE=TdS-PdV\). These expressions for \(dE\) must be equal:

    \[dE = {\left(\frac{\partial E}{\partial V}\right)}_TdV + {\left(\frac{\partial E}{\partial T}\right)}_VdT = TdS + PdV \nonumber \] Rearranging, we find a total differential for \(dS\) with \(V\) and \(T\) as the independent variables:

    \[dS = \frac{\mathrm{1}}{T}{\left(\frac{\partial E}{\partial T}\right)}_VdT + \frac{\mathrm{1}}{T}\left[{\left(\frac{\partial E}{\partial V}\right)}_T + P\right]dV \nonumber \]

    From the coefficient of \(dT\), we have

    \[{\left(\frac{\partial S}{\partial T}\right)}_V = \frac{\mathrm{1}}{T}{\left(\frac{\partial E}{\partial T}\right)}_V = \frac{C_V}{T} \nonumber \]

    where we use the definition \({\left({\partial E}/{\partial T}\right)}_V=C_V\). (When we write “\(C_V\),” we usually think of it as a property of a pure substance. The relationship above is valid for any reversible system. When we are describing a system that is not a pure substance, \(C_V\) is just an abbreviation for \({\left({\partial E}/{\partial T}\right)}_V\).) From the coefficient of \(dV\), we have

    \[{\left(\frac{\partial S}{\partial V}\right)}_T = \frac{\mathrm{1}}{T}\left[{\left(\frac{\partial E}{\partial V}\right)}_T + P\right] = {\left(\frac{\partial P}{\partial T}\right)}_V \nonumber \]

    where we use the relationship \({\left({\partial S}/{\partial V}\right)}_T={\left({\partial P}/{\partial T}\right)}_V\) that we find in §1. Substituting into the expression for \(dS\), we find \[dS = \frac{C_V}{T}dT + {\left(\frac{\partial P}{\partial T}\right)}_VdV \nonumber \]

    Now, from \(dE=TdS-PdV\), we have

    \[dE = C_VdT + \left[T{\left(\frac{\partial P}{\partial T}\right)}_V + P\right]dV \nonumber \]

    From \(H=E+PV\), we have

    \[ \begin{align*} dH &= dE + d\left(PV\right) \\[4pt] &= dE + {\left(\frac{\partial \left(PV\right)}{\partial T}\right)}_VdT + {\left(\frac{\partial \left(PV\right)}{\partial V}\right)}_TdV \\[4pt]&= dE + V{\left(\frac{\partial P}{\partial T}\right)}_VdT + \left[P + V{\left(\frac{\partial P}{\partial V}\right)}_T\right]dV \\[4pt]&= \left[C_V + V{\left(\frac{\partial P}{\partial T}\right)}_V\right]dT + \left[T{\left(\frac{\partial P}{\partial T}\right)}_V + V{\left(\frac{\partial P}{\partial V}\right)}_T\right]dV \end{align*} \nonumber \]

    Of course, we already have

    \[dA\mathrm{=-}SdT + PdV \nonumber \]

    From \(G=H-TS\), by an argument that parallels the above derivation of \(dH\), we obtain

    \[dG = \left[V{\left(\frac{\partial P}{\partial T}\right)}_V + S\right]dT + V{\left(\frac{\partial P}{\partial V}\right)}_TdV \nonumber \]

    Finally, we can write \(P=P\left(T,V\right)\) to find

    \[dP = {\left(\frac{\partial P}{\partial T}\right)}_VdT + {\left(\frac{\partial P}{\partial V}\right)}_TdV \nonumber \]

    \(P\), \(T\), \(V\), \(C_V\), \({\left({\partial P}/{\partial T}\right)}_V\), and \({\left({\partial P}/{\partial V}\right)}_T\) are all experimentally accessible for any reversible system. If we have this information for a system that undergoes a change from a state specified by \(T_1\) and \(V_1\) to a second state specified by \(T_2\) and \(V_2\), we can use these relationships to calculate \(\Delta E\), \(\Delta S\), and \(\Delta H\). To do so, we calculate the appropriate line integral along a reversible path. One such path is an isothermal reversible change, at \(T_1\), from \(V_1\) to \(V_2\), followed by a constant-volume change, at \(V_2\), from \(T_1\) to \(T_2\). In principle, the same procedure can used to calculate \(\Delta A\) and \(\Delta G\). However, because \(S\) appears in the differentials\(\ dA\) and \(dG\), this requires that we first find \(S\) as a function of \(V\) and\(\ T\).

    If the system is a pure substance for which we have an equation of state, we can find \({\left({\partial P}/{\partial T}\right)}_V\), and \({\left({\partial P}/{\partial V}\right)}_T\) by straightforward differentiation. When the substance is a gas, an equation of state may be available in the literature. When the substance is a liquid or a solid, these partial derivatives can still be related to experimentally accessible quantities. The compressibility of a substance is the change in its volume that results from a change in the applied pressure, at a constant temperature. The thermal expansion of a substance is the change in its volume that results from a change in its temperature, at a constant applied pressure. It is convenient to convert measurements of these properties into intensive functions of the state of the substance by expressing the volume change as a fraction of the original volume. That is, we define the coefficient of thermal expansion:

    \[\alpha = \frac{\mathrm{1}}{V}{\left(\frac{\partial V}{\partial T}\right)}_P \nonumber \]

    and the coefficient of isothermal compressibility:

    \[\beta \mathrm{=-}\frac{\mathrm{1}}{V}{\left(\frac{\partial V}{\partial P}\right)}_T \nonumber \]

    Coefficients of thermal expansion and isothermal compressibility are available in compilations of thermodynamic data for many liquids and solids. In general, both coefficients are weak functions of temperature. We have

    \[\left(\frac{\partial P}{\partial V}\right)_T=-\frac{1}{\beta V} \nonumber \]

    and

    \[\left(\frac{\partial P}{\partial T}\right)_V=-\left(\frac{\partial V}{\partial T}\right)_P/ \left(\frac{\partial V}{\partial P}\right)_T=\frac{\alpha }{\beta } \nonumber \]

    Using these coefficients, we can estimate a pressure change, for example, as a line integral of

    \[dP=\left(\frac{\alpha }{\beta }\right)dT-\left(\frac{1}{\beta V}\right)dV \nonumber \]


    This page titled 10.4: Expressing Thermodynamic Functions with Independent Variables V and T is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform.