Skip to main content
Chemistry LibreTexts

4.5: Combining the One-dimensional Probability Density Functions

  • Page ID
    151680
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In Section 4.4, we derive the probability density function for one Cartesian component of the velocity of a gas molecule. The probability density functions for the other two Cartesian components are the same function. For \(\mathop{v}\limits^{\rightharpoonup}=\left(v_x,v_y,v_z\right)\), we have \(v^2=v^2_x+v^2_y+v^2_z\), and

    \[ \begin{aligned} \frac{df_x\left(v_x\right)}{dv_x}= \left(\frac{\lambda }{2\pi }\right)^{1/2}\mathrm{exp}\left(\frac{-\lambda v^2_x}{2}\right) \\ \frac{df_y\left(v_y\right)}{dv_y}= \left(\frac{\lambda }{2\pi} \right)^{1/2}\mathrm{exp}\left(\frac{-\lambda v^2_y}{2}\right) \\ \frac{df_z\left(v_z\right)}{dv_z}= \left(\frac{\lambda }{2\pi }\right)^{1/2}\mathrm{exp}\left(\frac{-\lambda v^2_z}{2}\right) \end{aligned} \nonumber \]

    We now want to derive the three-dimensional probability density function from these relationships. Given these probability density functions for the Cartesian components of \(\mathop{v}\limits^{\rightharpoonup}\), we can find the probability density function in spherical coordinates

    \[ \begin{array}{l} \left(\frac{df_x\left(v_x\right)}{dv_x}\right)\left(\frac{df_y\left(v_y\right)}{dv_y}\right)\left(\frac{df_z\left(v_z\right)}{dv_z}\right) \\ = \left(\frac{\lambda }{2\pi }\right)^{3/2}\mathrm{exp}\left(\frac{-\lambda v^2_x}{2}\right)exp\left(\frac{-\lambda v^2_y}{2}\right)exp\left(\frac{-\lambda v^2_z}{2}\right) \\ = \left(\frac{\lambda }{2\pi }\right)^{3/2}\mathrm{exp}\left(\frac{-\lambda v^2}{2}\right) \\ =\rho \left(v,\theta ,\varphi \right) \end{array} \nonumber \]

    Since the differential volume element in spherical coordinates is \(v^2 \mathrm{sin} \theta ~ dvd\theta d\varphi\), the probability that a molecule has a a velocity vector whose magnitude lies between \(v\) and \(v+dv\), while its \(\theta\)-component lies between \(\theta\) and\(\ \theta +d\theta\), and its \(\varphi\)-component lies between \(\varphi\) and \(\varphi +d\varphi\) becomes

    \[\begin{array}{l} \left(\frac{df_v\left(v\right)}{dv}\right)\left(\frac{df_{\theta }\left(\theta \right)}{d\theta }\right)\left(\frac{df_{\varphi }\left(\varphi \right)}{d\varphi }\right)dvd\theta d\varphi \\ ~~ =\rho \left(v,\theta ,\varphi \right)v^2 \mathrm{sin} \theta dvd\theta d\varphi \\ ~~ =\left(\frac{\lambda }{2\pi }\right)^{3/2}v^2\mathrm{exp}\left(\frac{-\lambda v^2}{2}\right) \mathrm{sin} \theta dvd\theta d\varphi \end{array} \nonumber \]

    (We found the same result in Section 4.3, of course.) We can find the probability-density function for the scalar velocity by eliminating the dependence on the angular components. To do this, we need only sum up, at a given value of \(v\), the contributions from all possible values of \(\theta\) and \(\varphi\), recalling that \(0\le \theta <\pi\) and \(0\le \varphi <2\pi\). This sum is just

    \[ \begin{aligned} \frac{df_v\left(v\right)}{dv}\int^{\pi }_{\theta =0} \left(\frac{df_{\theta }\left(\theta \right)}{d\theta }\right) d\theta \int^{2\pi }_{\varphi =0} \left(\frac{df_{\varphi }\left(\varphi \right)}{d\varphi }\right)d\varphi = \\ =\left(\frac{\lambda }{2\pi }\right)^{3/2}v^2exp\left(\frac{-\lambda v^2}{2}\right)\int^{\pi }_{\theta =0} \mathrm{sin} \theta d\theta \int^{2\pi }_{\varphi =0} d\varphi \end{aligned} \nonumber \]

    Since \(\int^{\pi }_{\theta =0}{\left(\frac{df_{\theta }\left(\theta \right)}{d\theta }\right)}d\theta =\int^{2\pi }_{\varphi =0}{\left(\frac{{df}_{\varphi }\left(\varphi \right)}{d\varphi }\right)d\varphi }=1\), \(\int^{\pi }_0 \mathrm{sin} \theta d\theta =2\), and \(\int^{2\pi }_0 d\varphi =2\pi\), we again obtain the Maxwell-Boltzmann probability-density function for the scalar velocity:

    \[\frac{df_v\left(v\right)}{dv}=4\pi \left(\frac{\lambda }{2\pi }\right)^{3/2}v^2exp\left(\frac{-\lambda v^2}{2}\right) \nonumber \]

    Unlike the distribution function for the Cartesian components of velocity, the Maxwell-Boltzmann distribution for scalar velocities is not a normal distribution. Possible speeds lie in the interval \(0\le v<\infty\). Because of the \(v^2\) term, the Maxwell-Boltzmann equation is asymmetric; it has a pronounced tail at high velocities.


    This page titled 4.5: Combining the One-dimensional Probability Density Functions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform.