Skip to main content
Chemistry LibreTexts

10.2: Temperature Dependence of Keq

  • Page ID
    414075
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    To study the temperature dependence of \(K_{\text{eq}}\) we can use Equation 10.1.14 for the general equilibrium constant and write:

    \[ \ln K_{\text{eq}} = -\dfrac{\Delta G^{-\kern-6pt{\ominus}\kern-6pt-}}{RT}, \label{10.2.1} \]

    which we can then differentiate with respect to temperature at constant \(P,\{n_i\}\) on both sides:

    \[ \left( \dfrac{\partial \ln K_{\text{eq}}}{\partial T} \right)_{P,\{n_i\}} = -\dfrac{1}{R} \left[ \dfrac{\partial \left( \dfrac{\Delta G^{-\kern-6pt{\ominus}\kern-6pt-}}{T} \right)}{\partial T} \right]_{P,\{n_i\}}, \label{10.2.2} \]

    and, using Gibbs-Helmholtz equation (Equation \ref{9.9}) to simplify the left hand side, becomes:

    \[ \left( \dfrac{\partial \ln K_{\text{eq}}}{\partial T} \right)_{P,\{n_i\}} = -\dfrac{1}{R} \left( -\dfrac{\Delta H^{-\kern-6pt{\ominus}\kern-6pt-}}{T^2} \right) = \dfrac{\Delta H^{-\kern-6pt{\ominus}\kern-6pt-}}{RT^2}, \label{10.2.3} \]

    which gives the dependence of \(\ln K_{\text{eq}}\) on \(T\) that we were looking for. Equation \ref{10.2.3} is also called van ’t Hoff equation,\(^1\) and it is the mathematical expression of Le Chatelier’s principle. The simplest interpretation is as follows:

    • For an exothermic reaction (\(\Delta H^{-\kern-6pt{\ominus}\kern-6pt-}< 0\)): \(K_{\text{eq}}\) will decrease as the temperature increases.
    • For an endothermic reaction (\(\Delta H^{-\kern-6pt{\ominus}\kern-6pt-}> 0\)): \(K_{\text{eq}}\) will increase as the temperature increases.

    If we integrate the van ’t Hoff equation between two arbitrary points at constant \(P\), and assuming constant \(\Delta H^{-\kern-6pt{\ominus}\kern-6pt-}\), we obtain the following:

    \[ \int_1^2 d \ln K_{\text{eq}} = \dfrac{\Delta H^{-\kern-6pt{\ominus}\kern-6pt-}}{R} \int_1^2 \dfrac{dT}{T^2}, \label{10.2.4} \]

    which leads to the linear equation:

    \[ \ln K_{\text{eq}}(2) = \ln K_{\text{eq}}(1) - \dfrac{\Delta H^{-\kern-6pt{\ominus}\kern-6pt-}}{R} \left( \dfrac{1}{T_2}-\dfrac{1}{T_1} \right). \label{10.2.5} \]

    which is the equation that produces the so-called van ’t Hoff plots, from which \(\Delta H^{-\kern-6pt{\ominus}\kern-6pt-}\) can be experimentally determined:

    clipboard_eadadbfebad84ea528d019b784818f927.png
    Figure \(\PageIndex{1}\): Van ’t Hoff Plots for an Endothermic (Left, Blue) and an Exothermic (Right, Red) Reactions at Constant P.

    1. named after Jacobus Henricus “Henry” van ’t Hoff Jr. (1852–1911).

    This page titled 10.2: Temperature Dependence of Keq is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto Peverati via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.