Skip to main content
Chemistry LibreTexts

9.3: Pressure Dependence of ΔG

  • Page ID
    414071
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \[ \left(\dfrac{\partial G}{\partial P} \right)_{T,\{n_i\}}=V \nonumber \]

    We can now turn the attention to the second coefficient that gives how the Gibbs free energy changes when the pressure change. To do this, we put the system at constant \(T\) and \(\{n_i\}\), and then we consider infinitesimal variations of \(G\). From Equation 8.2.6:

    \[ dG = VdP -SdT +\sum_i\mu_i dn_i \quad \xrightarrow{\text{constant}\; T,\{n_i\}} \quad dG = VdP, \label{9.3.1} \]

    which is the differential equation that we were looking for. To study changes of \(G\) for macroscopic changes in \(P\), we can integrate Equation \(\ref{9.3.1}\) between initial and final pressures, and considering an ideal gas, we obtain:

    \[\begin{equation} \begin{aligned} \int_i^f dG &= \int_i^f VdP \\ \Delta G &= nRT \int_i^f \dfrac{dP}{P} = nRT \ln \dfrac{P_f}{P_i}. \end{aligned} \end{equation} \label{9.3.2} \ \]

    If we take \(P_i = P^{-\kern-6pt{\ominus}\kern-6pt-}= 1 \, \text{bar}\), we can rewrite Equation \ref{9.3.2} as:

    \[ G = G^{-\kern-6pt{\ominus}\kern-6pt-}+ nRT \ln \dfrac{P_f}{P^{-\kern-6pt{\ominus}\kern-6pt-}}, \label{9.3.3} \]

    which is useful to convert standard Gibbs free energies of formation at pressures different than standard pressure, using:

    \[ \Delta_{\text{f}} G = \Delta_{\text{f}} G^{-\kern-6pt{\ominus}\kern-6pt-}+ nRT \ln \dfrac{P_f}{\underbrace{P^{-\kern-6pt{\ominus}\kern-6pt-}}_{=1 \; \text{bar}}} = \Delta_{\text{f}} G^{-\kern-6pt{\ominus}\kern-6pt-}+ nRT \ln P_f \label{9.3.4} \]

    For liquids and solids, \(V\) is essentially independent of \(P\) (liquids and solids are incompressible), and Equation \ref{9.3.1} can be integrated as:

    \[ \Delta G = \int_i^f VdP = V \int_i^f dP = V \Delta P.\label{9.3.5} \]

    The plots in Figure \(\PageIndex{1}\) show the remarkable difference in the behaviors of \(\Delta_{\text{f}} G\) for a gas and for a liquid, as obtained from eqs. \ref{9.3.2} and \ref{9.3.5}.

    clipboard_eb18835e08a84b199c41c210cbf7f00ba.png
    Figure \(\PageIndex{1}\): Dependence of the Gibbs Free Energy of Formation of Liquid and Gaseous Ethanol at T = 310 K. The Curves Cross at the Vapor Pressure of Liquid Ethanol at this Temperature, which is 0.1 bar.

    This page titled 9.3: Pressure Dependence of ΔG is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto Peverati via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.