Skip to main content
Chemistry LibreTexts

8.4: Maxwell Relations

  • Page ID
    414067
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Let’s consider the fundamental equations for the thermodynamic potentials that we have derived in section 8.1:

    \[\begin{equation} \begin{aligned} dU(S,V,\{n_i\}) &= \enspace T dS -P dV + \sum_i \mu_i dn_i \\ dH(S,P,\{n_i\}) &= \enspace T dS + V dP + \sum_i \mu_i dn_i \\ dA(T,V,\{n_i\}) &= -S dT -P dV + \sum_i \mu_i dn_i \\ dG(T,P,\{n_i\}) &= -S dT + V dP + \sum_i \mu_i dn_i\;. \end{aligned} \end{equation} \nonumber \]

    From the knowledge of the natural variable of each potential, we could reconstruct these formulas by using the total differential formula:

    \[\begin{equation} \begin{aligned} dU &= \underbrace{\left(\dfrac{\partial U}{\partial S} \right)_{V,\{n_i\}}}_{T} dS + \underbrace{\left(\dfrac{\partial U}{\partial V} \right)_{S,\{n_i\}}}_{-P} dV + \sum_i \underbrace{\left(\dfrac{\partial U}{\partial n_i} \right)_{S,V,\{n_{j \neq i}\}}}_{\mu_i} dn_i \\ dH &= \underbrace{\left(\dfrac{\partial H}{\partial S} \right)_{P,\{n_i\}}}_{T} dS + \underbrace{\left(\dfrac{\partial H}{\partial P} \right)_{S,\{n_i\}}}_{V} dP + \sum_i \underbrace{\left(\dfrac{\partial H}{\partial n_i} \right)_{S,P,\{n_{j \neq i}\}}}_{\mu_i} dn_i \\ dA &= \underbrace{\left(\dfrac{\partial A}{\partial T} \right)_{V,\{n_i\}}}_{-S} dT + \underbrace{\left(\dfrac{\partial A}{\partial V} \right)_{T,\{n_i\}}}_{-P} dV + \sum_i \underbrace{\left(\dfrac{\partial A}{\partial n_i} \right)_{T,V,\{n_{j \neq i}\}}}_{\mu_i} dn_i \\ dG &= \underbrace{\left(\dfrac{\partial G}{\partial T} \right)_{V,\{n_i\}}}_{-S} dT + \underbrace{\left(\dfrac{\partial G}{\partial P} \right)_{T,\{n_i\}}}_{V} dP + \sum_i \underbrace{\left(\dfrac{\partial G}{\partial n_i} \right)_{T,P,\{n_{j \neq i}\}}}_{\mu_i} dn_i\;, \end{aligned} \end{equation} \nonumber \]

    we can derive the following new definitions:

    \[\begin{equation} \begin{aligned} T &= \left(\dfrac{\partial U}{\partial S} \right)_{V,\{n_i\}} = \left(\dfrac{\partial H}{\partial S} \right)_{P,\{n_i\}} \\ -P &= \left(\dfrac{\partial U}{\partial V} \right)_{S,\{n_i\}} = \left(\dfrac{\partial A}{\partial V} \right)_{T,\{n_i\}} \\ V &= \left(\dfrac{\partial H}{\partial P} \right)_{S,\{n_i\}} = \left(\dfrac{\partial G}{\partial P} \right)_{T,\{n_i\}} \\ -S &= \left(\dfrac{\partial A}{\partial T} \right)_{V,\{n_i\}} = \left(\dfrac{\partial G}{\partial T} \right)_{V,\{n_i\}} \\ \text{and:} \\ \mu_i &= \left(\dfrac{\partial U}{\partial n_i} \right)_{S,V,\{n_{j \neq i}\}} = \left(\dfrac{\partial H}{\partial n_i} \right)_{S,P,\{n_{j \neq i}\}} \\ &= \left(\dfrac{\partial A}{\partial n_i} \right)_{T,V,\{n_{j \neq i}\}} = \left(\dfrac{\partial G}{\partial n_i} \right)_{T,P,\{n_{j \neq i}\}}\;. \end{aligned} \end{equation} \nonumber \]

    Since \(T\), \(P\), \(V\), and \(S\) are now defined as partial first derivatives of a thermodynamic potential, we can now take a second partial derivation with respect to a separate variable, and rely on Schwartz’s theorem to derive the following relations:

    \[\begin{equation} \begin{aligned} \dfrac{\partial^2 U }{\partial S \partial V} &=& +\left(\dfrac{\partial T}{\partial V}\right)_{S,\{n_{j \neq i}\}} &=& -\left(\dfrac{\partial P}{\partial S}\right)_{V,\{n_{j \neq i}\}} \\ \dfrac{\partial^2 H }{\partial S \partial P} &=& +\left(\dfrac{\partial T}{\partial P}\right)_{S,\{n_{j \neq i}\}} &=& +\left(\dfrac{\partial V}{\partial S}\right)_{P,\{n_{j \neq i}\}} \\ -\dfrac{\partial^2 A }{\partial T \partial V} &=& +\left(\dfrac{\partial S}{\partial V}\right)_{T,\{n_{j \neq i}\}} &=& +\left(\dfrac{\partial P}{\partial T}\right)_{V,\{n_{j \neq i}\}} \\ \dfrac{\partial^2 G }{\partial T \partial P} &=& -\left(\dfrac{\partial S}{\partial P}\right)_{T,\{n_{j \neq i}\}} &=& +\left(\dfrac{\partial V}{\partial T}\right)_{P,\{n_{j \neq i}\}} \end{aligned} \end{equation}\label{8.4.4} \]

    The relations in \ref{8.4.4} are called Maxwell relations,1 and are useful in experimental settings to relate quantities that are hard to measure with others that are more intuitive.

    Exercise \(\PageIndex{1}\)

    Derive the last Maxwell relation in Equation \ref{8.4.4}.

    Answer

    We can start our derivation from the definition of \(V\) and \(S\) as a partial derivative of \(G\):

    \[ V = \left(\dfrac{\partial G}{\partial P} \right)_{T,\{n_i\}} \qquad \text{and:} \qquad -S = \left(\dfrac{\partial G}{\partial T} \right)_{V,\{n_i\}}, \nonumber \]

    and then take a second partial derivative of each quantity with respect to the second variable:

    \[\begin{equation} \begin{aligned} \left(\dfrac{\partial V}{\partial T} \right)_{P,\{n_i\}} &=\dfrac{\partial}{\partial T}\left[ \left(\dfrac{\partial G}{\partial P} \right)_{T,\{n_i\}} \right]_{P,\{n_i\}} \\ \\ -\left(\dfrac{\partial S}{\partial P} \right)_{T,\{n_i\}} &=\dfrac{\partial}{\partial P}\left[ \left(\dfrac{\partial G}{\partial T} \right)_{P,\{n_i\}} \right]_{T,\{n_i\}} \;. \end{aligned} \end{equation} \nonumber \]

    These two derivatives are mixed partial second derivatives of \(G\) with respect to \(T\) and \(P\), and therefore, according to Schwartz’s theorem, they are equal to each other:

    \[\begin{equation} \begin{aligned} \dfrac{\partial}{\partial T}\left[ \left(\dfrac{\partial G}{\partial P} \right)_{T,\{n_i\}} \right]_{P,\{n_i\}} &= \dfrac{\partial}{\partial P}\left[ \left(\dfrac{\partial G}{\partial T} \right)_{P,\{n_i\}} \right]_{T,\{n_i\}}, \\ \\ \text{hence:} \\ \\ \left(\dfrac{\partial V}{\partial T} \right)_{P,\{n_i\}} &= -\left(\dfrac{\partial S}{\partial P} \right)_{T,\{n_i\}}, \end{aligned} \end{equation} \nonumber \]

    which is the last of Maxwell relations, as defined in Equation \ref{8.4.4}. This relation is particularly useful because it connects the quantity \(\left(\dfrac{\partial S}{\partial P} \right)_{T,\{n_i\}}\)—which is impossible to measure in a lab—with the quantity \(\left(\dfrac{\partial V}{\partial T} \right)_{P,\{n_i\}}\)—which is easier to measure from an experiment that determines isobaric volumetric thermal expansion coefficients.


    1. Maxwell relations should not be confused with the Maxwell equations of electromagnetism.

    This page titled 8.4: Maxwell Relations is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto Peverati via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?