Skip to main content
Chemistry LibreTexts

Real Gases - Joule-Thomson Expansion

  • Page ID
    1912
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    The Joule-Thomson effect is also known as the Joule-Kelvin effect. This effect is present in non ideal gasses, where a change in temperature occurs upon expansion.

    Introduction

    The Joule-Thomson coefficient is given by

    \[\mu_{\mathrm JT} = \left. \dfrac{\partial T}{\partial p} \right\vert_H\]

    where

    • T is the temperature,
    • p is the pressure and
    • H is the enthalpy.

    In terms of heat capacities one has

    \[\mu_{\mathrm JT} C_V = -\left. \dfrac{\partial E}{\partial V} \right \vert_T \]

    and

    \[\mu_{\mathrm JT} C_p = -\left. \dfrac{\partial H}{\partial p} \right \vert_T \]

    In terms of the second virial coefficient at zero pressure one has

    \[\mu_{\mathrm JT}\vert_{p=0} = ^0\!\!\phi = B_2(T) -T \dfrac{dB_2(T)}{dT}\]

    References

    1. Jacques-Olivier Goussard and Bernard Roulet "Free expansion for real gases", American Journal of Physics 61 pp. 845-848 (1993)
    2. E. Albarran-Zavala, B. A. Espinoza-Elizarraraz, F. Angulo-Brown "Joule Inversion Temperatures for Some Simple Real Gases", The Open Thermodynamics Journal 3 pp. 17-22 (2009)
    3. Thomas R. Rybolt "A virial treatment of the Joule and Joule-Thomson coefficients", Journal of Chemical Education 58 pp. 620-624 (1981)

    Real Gases - Joule-Thomson Expansion is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by SklogWiki.