Skip to main content
Chemistry LibreTexts

8.54: Expressing Bell and GHZ States in Vector Format Using Mathcad

  • Page ID
    148205
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Mathcad provides the kronecker command for matrix tensor multiplication. It requires square matrices for its arguments and therefore cannot be used directly for vector tensor multiplication. However, if a vector is augmented with a null vector (or matrix) to produce a square matrix, vector tensor multiplication can be carried out using kronecker and a submatrix command that discards everything except the first column of the product matrix. This technique is illustrated by putting the Bell and GHZ states in vector format.

    The z- and x-direction spin eigenfunctions and the appropriate null vector are required.

    \[ \begin{matrix} z_u = \begin{pmatrix} 1 \\ 0 \end{pmatrix} & z_d = \begin{pmatrix} 0 \\ 1 \end{pmatrix} & x_u = \frac{1}{ \sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} & x_d = \frac{1}{ \sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} & n = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{matrix} \nonumber \]

    The Mathcad syntax for tensor multiplication of two 2-dimensional vectors.

    \[ \psi \text{(a, b)} = \text{submatrix(kronecker(augment(a, n), augment(b, n)), 1, 4, 1, 1)} \nonumber \]

    The four maximally entangled Bell states will be expressed in both the z- and x-basis.

    \[ | \Phi_p \rangle = \frac{1}{ \sqrt{2}} \left[ | \uparrow_1 \rangle | \uparrow_2 \rangle + | \downarrow_1 \rangle | \downarrow_2 \rangle \right] = \frac{1}{ \sqrt{2}} \left[ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right] = \frac{1}{ \sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \nonumber \]

    \[ \begin{matrix} \Phi_p = \frac{1}{ \sqrt{2}} \left( \psi (z_u,~z_u) + \psi (z_d,~z_d) \right) & \Phi_p = \begin{pmatrix} 0.707 \\ 0 \\ 0 \\ 0.707 \end{pmatrix} & \Phi_p = \frac{1}{ \sqrt{2}} \left( \psi (x_u,~x_u) \right) + \left( \psi (x_d,~x_d) \right) & \Phi_p = \begin{pmatrix} 0.707 \\ 0 \\ 0 \\ 0.707 \end{pmatrix} \end{matrix} \nonumber \]

    \[ | \Phi_m \rangle = \frac{1}{ \sqrt{2}} \left[ | \uparrow_1 \rangle | \uparrow_2 \rangle - | \downarrow_1 \rangle | \downarrow_2 \rangle \right] = \frac{1}{ \sqrt{2}} \left[ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right] = \frac{1}{ \sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix} \nonumber \]

    \[ \begin{matrix} \Phi_m = \frac{1}{ \sqrt{2}} \left( \psi (z_u,~z_u) - \psi (z_d,~z_d) \right) & \Phi_m = \begin{pmatrix} 0.707 \\ 0 \\ 0 \\ -0.707 \end{pmatrix} & \Phi_m = \frac{1}{ \sqrt{2}} \left( \psi (x_u,~x_u) \right) + \left( \psi (x_d,~x_d) \right) & \Phi_m = \begin{pmatrix} 0.707 \\ 0 \\ 0 \\ -0.707 \end{pmatrix} \end{matrix} \nonumber \]

    \[ | \Psi_p \rangle = \frac{1}{ \sqrt{2}} \left[ | \uparrow_1 \rangle | \uparrow_2 \rangle + | \downarrow_1 \rangle | \downarrow_2 \rangle \right] = \frac{1}{ \sqrt{2}} \left[ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right] = \frac{1}{ \sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \nonumber \]

    \[ \begin{matrix} \Psi_p = \frac{1}{ \sqrt{2}} \left( \psi (z_u,~z_u) + \psi (z_d,~z_d) \right) & \Phi_p = \begin{pmatrix} 0 \\ 0.707 \\ 0.707 \\ 0 \end{pmatrix} & \Psi_p = \frac{1}{ \sqrt{2}} \left( \psi (x_u,~x_u) \right) - \left( \psi (x_d,~x_d) \right) & \Psi_p = \begin{pmatrix} 0 \\ 0.707 \\ 0.707 \\ 0 \end{pmatrix} \end{matrix} \nonumber \]

    \[ | \Psi_m \rangle = \frac{1}{ \sqrt{2}} \left[ | \uparrow_1 \rangle | \uparrow_2 \rangle - | \downarrow_1 \rangle | \downarrow_2 \rangle \right] = \frac{1}{ \sqrt{2}} \left[ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right] = \frac{1}{ \sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix} \nonumber \]

    \[ \begin{matrix} \Psi_m = \frac{1}{ \sqrt{2}} \left( \psi (z_u,~z_u) - \psi (z_d,~z_d) \right) & \Psi_m = \begin{pmatrix} 0 \\ 0.707 \\ -0.707 \\ 0 \end{pmatrix} & \Psi_m = \frac{1}{ \sqrt{2}} \left( \psi (x_u,~x_u) \right) - \left( \psi (x_d,~x_d) \right) & \Psi_m = \begin{pmatrix} 0 \\ 0.707 \\ -0.707 \\ 0 \end{pmatrix} \end{matrix} \nonumber \]

    The Mathcad syntax for tensor multiplication of three 2-dimensional vectors.

    \[ \Psi \text{(a, b, c)} = \text{submatrix(kronecker(augment(a, n), kronecker(augment(b, n), augment(c, n))), 1, 8, 1, 1)} \nonumber \]

    \[ | \Psi \rangle = \frac{1}{ \sqrt{2}} \left[ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \pm \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right] = \frac{1}{ \sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & \pm 1 \end{pmatrix}^T \nonumber \]

    \[ \begin{matrix} \Psi_1 = \frac{1}{ \sqrt{2}} \left( \psi (z_u,~z_u,~z_u) + \psi (z_d,~z_d,~z_d) \right) & \Psi_1^T = \begin{pmatrix} 0.707 & 0 & 0 & 0 & 0 & 0 & 0 & 0.707 \end{pmatrix} \\ \Psi_2 = \frac{1}{ \sqrt{2}} \left( \psi (z_u,~z_u,~z_u) - \psi (z_d,~z_d,~z_d) \right) & \Psi_2^T = \begin{pmatrix} 0.707 & 0 & 0 & 0 & 0 & 0 & 0 & -0.707 \end{pmatrix} \end{matrix} \nonumber \]

    \[ | \Psi \rangle = \frac{1}{ \sqrt{2}} \left[ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \pm \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right] = \frac{1}{ \sqrt{2}} \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & \pm 1 & 0 \end{pmatrix}^T \nonumber \]

    \[ \begin{matrix} \Psi_3 = \frac{1}{ \sqrt{2}} \left( \psi (z_u,~z_u,~z_d) + \psi (z_d,~z_d,~z_u) \right) & \Psi_3^T = \begin{pmatrix} 0 & 0.707 & 0 & 0 & 0 & 0 & 0.707 & 0 \end{pmatrix} \\ \Psi_4 = \frac{1}{ \sqrt{2}} \left( \psi (z_u,~z_u,~z_d) - \psi (z_d,~z_d,~z_u) \right) & \Psi_4^T = \begin{pmatrix} 0 & 0.707 & 0 & 0 & 0 & 0 & -0.707 & 0 \end{pmatrix} \end{matrix} \nonumber \]

    \[ | \Psi \rangle = \frac{1}{ \sqrt{2}} \left[ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \pm \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right] = \frac{1}{ \sqrt{2}} \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & \pm 1 & 0 & 0 \end{pmatrix}^T \nonumber \]

    \[ \begin{matrix} \Psi_5 = \frac{1}{ \sqrt{2}} \left( \psi (z_u,~z_d,~z_u) + \psi (z_d,~z_u,~z_d) \right) & \Psi_5^T = \begin{pmatrix} 0 & 0 & 0.707 & 0 & 0 & 0.707 & 0 & 0 \end{pmatrix} \\ \Psi_6 = \frac{1}{ \sqrt{2}} \left( \psi (z_u,~z_d,~z_u) - \psi (z_d,~z_u,~z_d) \right) & \Psi_6^T = \begin{pmatrix} 0 & 0 & 0.707 & 0 & 0 & -0.707 & 0 & 0 \end{pmatrix} \end{matrix} \nonumber \]

    \[ | \Psi \rangle = \frac{1}{ \sqrt{2}} \left[ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \pm \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right] = \frac{1}{ \sqrt{2}} \begin{pmatrix} 0 & 0 & 0 & 1 & \pm 1 & 0 & 0 & 0 \end{pmatrix}^T \nonumber \]

    \[ \begin{matrix} \Psi_7 = \frac{1}{ \sqrt{2}} \left( \psi (z_u,~z_d,~z_d) + \psi (z_d,~z_u,~z_u) \right) & \Psi_7^T = \begin{pmatrix} 0 & 0 & 0 & 0.707 & 0.707 & 0 & 0 & 0 \end{pmatrix} \\ \Psi_8 = \frac{1}{ \sqrt{2}} \left( \psi (z_u,~z_d,~z_d) - \psi (z_d,~z_u,~z_u) \right) & \Psi_8^T = \begin{pmatrix} 0 & 0 & 0 & 0.707 & -0.707 & 0 & 0 & 0 \end{pmatrix} \end{matrix} \nonumber \]


    This page titled 8.54: Expressing Bell and GHZ States in Vector Format Using Mathcad is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.