Skip to main content
Chemistry LibreTexts

476: Cosmic Background Radiation

  • Page ID
    135893
  • The cosmic background radiation fills all space and is a relic from the "big bang" that created the universe approximately 18 billion years ago. The data1 shown below, spectral brightness2 as a function of wave number, was recorded (1989) by the Cosmic Background Explorer satellite (COBE). Below the data is fit with the Planck blackbody radiation equation to determine the cosmic background temperature.

    Define the fundamental constants h, k, and c.

    h := 6.62608 ⋅ 10-34 k := 1.380622 ⋅ 10−23 c := 2.99792458 ⋅ 108

    νi := 100 ⋅ νi Bi := 10−18 ⋅ Bi

    Provide a seed value for the background temperature: T := 10

    Define spectral brightness equation:

    \[ F(\nu , T) := 2 \cdot h \cdot \nu ^{3} \cdot c \cdot \frac{1}{(exp( \frac{ h \cdot \nu}{k \cdot T}) - 1)}\]

    SSD stands for sum of the square of the deviations between data and the equation that is being fit to the data.

    \[SSD(T) = \sum_{i} (B_{i} - F (\nu _{i}, T))^{2}\]

    Given SSD(T) := 0 T := Minerr(T) T := 2.728

    Thus the best fit to the data is obtained with a cosmic background temperature of 2.728 K.

    Screen Shot 2019-02-07 at 1.11.34 PM.png

    Notes:

    1. Data taken from: S. Bluestone, JCE 78, 215-218 (2001).

    2. The relationship between spectral brightness and Planck's radiation density function is:

    \( B( \nu , T) = \frac{c}{4 \cdot \pi} \cdot \rho ( \nu, T)\)

    n := 43 i := 1 .. n

    \( \nu_{i}\) :=

    \( \begin{array}{|r|}
    \hline \\
    2.27 \\
    \hline \\
    2.72 \\
    \hline \\
    3.18 \\
    \hline \\
    3.63 \\
    \hline \\
    4.08 \\
    \hline \\
    4.54 \\
    \hline \\
    4.99 \\
    \hline \\
    5.45 \\
    \hline \\
    5.90 \\
    \hline \\
    6.35 \\
    \hline \\
    6.81 \\
    \hline \\
    7.26 \\
    \hline \\
    7.71 \\
    \hline \\
    8.17 \\
    \hline \\
    8.62 \\
    \hline \\
    9.08 \\
    \hline \\
    9.53 \\
    \hline \\
    9.98 \\
    \hline \\
    10.44 \\
    \hline \\
    10.89 \\
    \hline \\
    10.89 \\
    \hline \\
    11.34 \\
    \hline \\
    11.80 \\
    \hline \\
    12.25 \\
    \hline \\
    12.71 \\
    \hline \\
    13.16 \\
    \hline \\
    13.61 \\
    \hline \\
    14.07 \\
    \hline \\
    14.52 \\
    \hline \\
    14.97 \\
    \hline \\
    15.43 \\
    \hline \\
    15.88 \\
    \hline \\
    16.34 \\
    \hline \\
    16.79 \\
    \hline \\
    17.24 \\
    \hline\\
    17.70 \\
    \hline \\
    18.15 \\
    \hline \\
    18.61 \\
    \hline \\
    19.06 \\
    \hline \\
    19.51 \\
    \hline \\
    19.97 \\
    \hline \\
    20.42 \\
    \hline \\
    20.87 \\
    \hline \\
    21.33 \\
    \hline
    \end{array} \)

    Bi :=

    \( \begin{array}{|r|}
    \hline \\
    2.0110 \\
    \hline \\
    2.5003 \\
    \hline \\
    2.9369 \\
    \hline \\
    3.2858 \\
    \hline \\
    3.5503 \\
    \hline \\
    3.7316 \\
    \hline \\
    3.8269 \\
    \hline \\
    3.8477 \\
    \hline \\
    3.8027 \\
    \hline \\
    3.7025 \\
    \hline \\
    3.5551 \\
    \hline \\
    3.3773 \\
    \hline \\
    3.1752 \\
    \hline \\
    2.9535 \\
    \hline \\
    2.7281 \\
    \hline \\
    2.4957 \\
    \hline \\
    2.2721 \\
    \hline \\
    2.0552 \\
    \hline \\
    1.8483 \\
    \hline \\
    1.6488 \\
    \hline \\
    1.4672 \\
    \hline \\
    1.2973 \\
    \hline \\
    1.1438 \\
    \hline \\
    1.0019 \\
    \hline \\
    0.8771 \\
    \hline \\
    0.7648 \\
    \hline \\
    0.6631 \\
    \hline \\
    0.5749 \\
    \hline \\
    0.4965 \\
    \hline \\
    0.4265 \\
    \hline \\
    0.3669 \\
    \hline \\
    0.3136 \\
    \hline \\
    0.2684 \\
    \hline \\
    0.2287 \\
    \hline \\
    0.1945 \\
    \hline\\
    0.1657 \\
    \hline \\
    0.1396 \\
    \hline \\
    0.1185 \\
    \hline \\
    0.1003 \\
    \hline \\
    0.0846 \\
    \hline \\
    0.0717 \\
    \hline \\
    0.0587 \\
    \hline \\
    0.0459 \\
    \hline
    \end{array} \)