Skip to main content
Chemistry LibreTexts

8.24: A Brief Analysis of Mermin's GHZ Thought Experiment

  • Page ID
    143613
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Twenty years ago N. David Mermin published two articles (Physics Today, June 1990; American Journal of Physics, August 1990) in the general physics literature on a Greenberger-Horne-Zeilinger (American Journal of Physics, December 1990; Nature, 3 February 2000) gedanken experiment involving spins that sharply revealed the clash between local realism and the quantum view of reality.

    Three spin-1/2 particles are created in a single event and move apart in the horizontal y-z plane. Subsequent spin measurements will be carried out in units of h/4π in the z-basis with spin operators in the x- and y-directions.

    The z-basis eigenfunctions are:

    \[ \begin{matrix} Sz_{up} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} & Sz_{down} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{matrix} \nonumber \]

    The x- and y-direction spin operators in the z-basis are the Pauli matrices:

    \[ \begin{matrix} \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} & \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \end{matrix} \nonumber \]

    The initial entangled spin state for the three spin-1/2 particles in tensor notation is:

    \[ \begin{matrix} | \Psi \rangle = \frac{1}{ \sqrt{2}} \left[ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right] = \frac{1}{ \sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \end{pmatrix} & \Psi = \frac{1}{ \sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \end{pmatrix} \end{matrix} \nonumber \]

    The following operators represent the measurements to be carried out on spins 1, 2 and 3, in that order.

    \[ \begin{matrix} \sigma_x^1 \otimes \sigma_y^2 \otimes \sigma_y^3 & \sigma_y^1 \otimes \sigma_x^2 \otimes \sigma_y^3 & \sigma_y^1 \otimes \sigma_y^2 \otimes \sigma_x^3 & \sigma_x^1 \otimes \sigma_x^2 \otimes \sigma_x^3 \end{matrix} \nonumber \]

    The matrix tensor product is also known as the Kronecker product, which is available in Mathcad. The four operators in tensor format are formed as follows.

    \[ \begin{matrix} \sigma_{xyy} = \text{kronecker}( \sigma_x,~ \text{kronecker}( \sigma_y,~ \sigma_y)) & \sigma_{yxy} = \text{kronecker}( \sigma_y,~ \text{kronecker}( \sigma_x,~ \sigma_y)) \\ \sigma_{yyx} = \text{kronecker}( \sigma_y,~ \text{kronecker}( \sigma_y,~ \sigma_x)) & \sigma_{xxx} = \text{kronecker}( \sigma_x,~ \text{kronecker}( \sigma_x,~ \sigma_x)) \end{matrix} \nonumber \]

    The expectation values of the operators are now calculated.

    \[ \begin{matrix} \Psi^T \sigma_{xyy} \Psi = 1 & \Psi^T \sigma_{yxy} \Psi = 1 & \Psi^T \sigma_{yyx} \Psi = 1 & \Psi^T \sigma_{xxx} \Psi = -1 \end{matrix} \nonumber \]

    Consequently the product of the four operators has the expectation value of -1.

    \[ \Psi^T \sigma_{xyy} \sigma_{yxy} \sigma_{yyx} \sigma_{xxx} \Psi = -1 \nonumber \]

    Local realism assumes that objects have definite properties independent of measurement. In this example it assumes that the x- and y-components of the spin have definite values prior to measurement. This position leads to a contradiction with the above result. The following analysis is taken from "Quantum Information Science" by Seth Lloyd.

    Looking again at the measurement operators, notice that there is a σx measurement on the first spin in the first and fourth experiment. If the spin state is well-defined before measurement those results have to be the same, either both +1 or both -1, so that the product of the two measurements is +1.

    \[ \begin{matrix} \sigma_x^1 \otimes \sigma_y^2 \otimes \sigma_y^3 & \sigma_y^1 \otimes \sigma_x^2 \otimes \sigma_y^3 & \sigma_y^1 \otimes \sigma_y^2 \otimes \sigma_x^3 & \sigma_x^1 \otimes \sigma_x^2 \otimes \sigma_x^3\end{matrix} \nonumber \]

    Likewise there is a σy measurement on the second spin in experiments one and three. By similar arguments those results will lead to a product of +1 also. Continuing with all the pairs in the total operator using local realistic reasoning unambiguously shows that its expectation value should be +1, in sharp disagreement with the quantum mechanical result of -1.


    This page titled 8.24: A Brief Analysis of Mermin's GHZ Thought Experiment is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.