1.87: Planck's Radiation Equation Fit to Experimental Data
- Page ID
- 157655
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)\[
\mathrm{n} :=42 \qquad \mathrm{i} :=1 . . \mathrm{n}
\nonumber \]
\(\rho_{i} :=\) | \(\lambda_{i} :=\) |
0.07 | 0.667 |
0.096 | 00.720 |
0.10 | 0.737 |
0.190 | 0.811 |
0.210 | 0.383 |
0.398 | 0.917 |
0.420 | 0.917 |
0.680 | 1.027 |
0.708 | 1.021 |
1.036 | 1.167 |
1.062 | 1.172 |
1.258 | 1.247 |
1.669 | 1.484 |
1.770 | 1.697 |
1.776 | 1.831 |
1.730 | 2.039 |
1.685 | 2.170 |
1.640 | 2.275 |
1.551 | 2.406 |
1.392 | 2.563 |
1.145 | 2.27 |
1.115 | 2.824 |
1.071 | 2.916 |
1.042 | 2.921 |
0.974 | 3.050 |
0.918 | 2.151 |
0.797 | 3.344 |
0.760 | 3.450 |
0.742 | 3.556 |
0.698 | 3.661 |
0.667 | 3.754 |
0.570 | 4.027 |
0.426 | 4.427 |
0.378 | 4.613 |
0.345 | 4.805 |
0.310 | 4.968 |
0.280 | 5.128 |
0.250 | 5.296 |
0.220 | 5.469 |
0.205 | 5.632 |
0.175 | 5.783 |
0.155 | 6.168 |
The data for this exercise is taken from page 19 of Eisberg and Resnick, Quantum Physics.
The values of rho are given in units of 103 joules/m3 and the values of lambda are given in 10‐6 m. The temperature is 1595 K.
Two pairs of data points are used to get approximate values for the parameters a and b in the Planck equation.
\[
a :=1 \qquad \mathrm{b} :=1
\nonumber \]
Given
\[
\rho_{16}=\frac{a \cdot\left(\lambda_{16}\right)^{-5}}{e^{\frac{b}{\lambda_{16}}}} \qquad \rho_{22}=\frac{a \cdot\left(\lambda_{22}\right)^{-5}}{e^{\frac{b}{\lambda_{22}}}-1}
\nonumber \]
\[
\left(\begin{array}{l}{\mathrm{a}} \\ {\mathrm{b}}\end{array}\right) :=\text { Find }(\mathrm{a}, \mathrm{b}) \qquad \mathrm{a}=3.84 \times 10^{3} \qquad \mathrm{b}=8.479
\nonumber \]
Planck's Equation is fit to data:
\[
\mathrm{F}(\lambda, \mathrm{a}, \mathrm{b}) :=\frac{\mathrm{a} \cdot \lambda^{-5}}{e^{\frac{\mathrm{b}}{\lambda}}-1}
\nonumber \]
\[
\operatorname{SSD}(\mathrm{a}, \mathrm{b}) :=\sum_{\mathrm{i}}\left(\rho_{\mathrm{i}}-\mathrm{F}\left(\lambda_{\mathrm{i}}, \mathrm{a}, \mathrm{b}\right)\right)^{2}
\nonumber \]
Given
\[
\operatorname{SSD}(\mathrm{a}, \mathrm{b})=0 \qquad \mathrm{a}>0 \qquad \mathrm{b}>0 \qquad\left(\begin{array}{l}{\mathrm{a}} \\ {\mathrm{b}}\end{array}\right) :=\operatorname{Minerr}(\mathrm{a}, \mathrm{b})
\nonumber \]
Display optimum values of a and b:
\[
\mathrm{a}=4.715 \times 10^{3} \qquad \mathrm{b}=8.906
\nonumber \]
Plot of fit:
\[
1 :=0.05, 0.1 \ldots 7
\nonumber \]
Calculate Planck's constant using the value of b, which is equal to (hc)/(kT).
\[
\mathrm{h} :=\frac{\mathrm{b} \cdot 10^{-6} \cdot 1.381 \cdot 10^{-23} \cdot 1595}{2.9979 \cdot 10^{8}} \qquad \mathrm{h}=6.544 \times 10^{-34}
\nonumber \]