Skip to main content
Chemistry LibreTexts

22.6.3: ii. Exercises

  • Page ID
    85560
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Q1

    By expanding the molecular orbitals \(\{\phi\kappa\}\) as linear combinations of atomic orbitals \(\{\chi_{\mu}\}\),

    \[ \phi_k = \sum\limits_\mu c_{\mu k}\chi_\mu \nonumber \]

    show how the canonical Hartree-Fock (HF) equations:

    \[ F \phi_i - \epsilon_i\phi_j \nonumber \]
    reduce to the matrix eigenvalue-type equation of the form given in the text:

    \[ \sum\limits_\nu F_{\mu\nu} C_{\nu i} = \epsilon_i\sum\limits_{\nu} S_{\mu\nu}C_{\nu i} \nonumber \]

    where:
    \begin{align} F_{\mu\nu} &= \langle \chi_\mu |h|\chi_\nu \rangle + \sum\limits_{\delta \kappa} \left[ \gamma_{\delta \kappa} \langle \chi_\mu \chi_\delta |g| \chi_\nu \chi_\kappa \rangle - \gamma_{\delta \kappa}^{ex} \langle \chi_\mu \chi_\delta |g| \chi_\kappa \chi_\nu \rangle \right], \\ S_{\mu\nu} &= \langle \chi_\mu | \chi_\nu \rangle, \gamma_{\delta \kappa} = \sum\limits_{i=occ} C_{\delta i}C_{\kappa i}, \\ \text{and } \gamma_{\delta \kappa}^{ex} &= \sum\limits_{\substack{\text{occ and}\\\text{same spin}}}C_{\delta i}C_{\kappa i}. \end{align}

    Note that the sum over i in \(\gamma_{\delta\kappa} \text{ and } \gamma_{\delta\kappa}\) is a sum over spin orbitals. In addition, show

    that this Fock matrix can be further reduced for the closed shell case to:
    \[ F_{\mu\nu} = \langle \chi_\mu |h| \chi_\nu \rangle + \sum\limits_{\delta\kappa} P_{\delta\kappa} \left[ \langle \chi_\mu \chi_\delta |g| \chi_\nu \chi_\kappa \rangle - \dfrac{1}{2}\langle \chi_\mu \chi_\delta |g| \chi_\kappa \chi_\nu \rangle \right] , \nonumber \]

    where the charge bond order matrix, P, is defined to be:
    \[ P_{\delta \kappa} = \sum\limits_{i=occ} 2C_{\delta i}C_{\kappa i}, \nonumber \]
    where the sum over i here is a sum over orbitals not spin orbitals.

    Q2

    Show that the HF total energy for a closed-shell system may be written in terms of integrals over the orthonormal HF orbitals as:

    \[ \text{E(SCF) } = 2\sum\limits_{k}^{occ} \langle \phi_k |h| \phi_k \rangle + \sum\limits_{kl}^{occ}\left[ 2\langle k1| gk1 \rangle - \langle k1 |g| 1k \rangle \right] + \sum\limits_{\mu >\nu} \dfrac{Z_\mu Z_\nu}{R_{\mu\nu}}. \nonumber \]

    Q3

    Show that the HF total energy may alternatively be expressed as:
    \[ \text{E(SCF)} = \sum\limits_k^{occ} \left( \epsilon_k + \langle \phi_k |h| \phi_k \rangle \right) + \sum\limits_{\mu > \nu} \dfrac{Z_\mu Z_\nu}{R_{\mu\nu}} \nonumber \]
    where the \(\epsilon_k\) refer to the HF orbital energies.


    This page titled 22.6.3: ii. Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?