# 22.5.4: iv. Problem Solutions

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Q1

a. $$T_{nm} \approx \dfrac{|\langle n|V|m \rangle |^2}{\hbar^2\omega_{nm}^2}$$
evaluating $$\langle 1s|V|2s \rangle$$ (using only the radial portions of the 1s and 2s wavefunctions since the spherical harmonics will integrate to unity) where V = $$(e^2,r):$$

\begin{align} \langle 1s|V|2s \rangle &= \int 2 \left( \dfrac{Z}{a_0} \right)^{\dfrac{3}{2}} e^{\dfrac{-Zr}{a_0}}\dfrac{1}{r}\dfrac{1}{\sqrt{2}}\left( \dfrac{Z}{a_0} \right)^{\dfrac{3}{2}} \left( 1 - \dfrac{Z_r}{2a_0}\right) e^{\dfrac{-Zr}{2a_0}}r^2dr \\ \langle 1s|V|2s \rangle &= \dfrac{2}{\sqrt{2}} \left( \dfrac{Z}{a_0} \right)^{3} \left[ \int re^{\dfrac{-3Zr}{2a_0}}dr - \int \dfrac{Zr^2}{2a_0} e^{\dfrac{-3Zr}{2a_0}}dr \right] \end{align}
Using integral equation 4 for two integration we obtain:
\begin{align} \langle 1s|V|2s \rangle &= \dfrac{2}{\sqrt{2}} \left( \dfrac{Z}{a_0} \right)^3 \left[ \dfrac{1}{\left( \dfrac{3Z}{2a_0} \right)^2} - \left( \dfrac{Z}{2a_0} \right) \dfrac{2}{\left( \dfrac{3Z}{2a_0} \right)} \right] \\ \langle 1s|V|2s \rangle &= \dfrac{2}{\sqrt{2}} \left( \dfrac{Z}{a_0} \right)^3 \left[ \dfrac{2^2a_0^2}{3^2Z^2} - \dfrac{2^3a_0^2}{3^3Z^2} \right] \\ \langle 1s|V|2s \rangle &= \dfrac{2}{\sqrt{2}} \left( \dfrac{Z}{a_0} \right)^3 \left[ \dfrac{(3)2^2a_0^2 - 2^3a_0^2}{3^3Z^2} \right] = \dfrac{8Z}{\sqrt{2}27a_0} \\ Now, & \\ E_n &= -\dfrac{Z^2e^2}{n^22a_0} \text{, } E_{1s} = -\dfrac{Z^2e^2}{2a_0}\text{, } E_{2s} = -\dfrac{Z^2e^2}{8a_0} \text{, } E_{2s} - E_{1s} = \dfrac{3Z^2e^2}{8a_0} \\ So, & \\ T_{mn} &= \dfrac{\left( \dfrac{8Z}{\sqrt{2}27a_0} \right)^2}{\left( \dfrac{3Z^2}{8a_0} \right)} = \dfrac{2^6Z^22^6a_0^2}{(2)3^8a_0^2Z^4} = \dfrac{2^{11}}{3^8Z^2} = 0.312 \text{( for Z = 1)} \end{align}

b. $$\varphi_m (r) = \varphi_{1s} = 2\left( \dfrac{Z}{a_0} \right)^{\dfrac{3}{2}} e^{\dfrac{-Zr}{a_0}} \text{Y}_{00}$$
The orthogonality of the spherical harmonics results in only s-states having non-zero values for $$A_{nm}$$. We can then drop the $$Y_{00}$$ (integrating this term will only result in unity) in determining the value of $$A_{1s,2s}$$.
\begin{align} \psi_n (r) &= \psi_{2s} = \dfrac{1}{\sqrt{2}}\left( \dfrac{Z}{a_0} \right)^{\dfrac{3}{2}} \left( 1 - \dfrac{Zr}{2a_0} \right) e^{\dfrac{-Zr}{2a_0}} \\ \text{Remember for } \varphi_{1s}Z = 1 \text{ and or } \psi_{2s} Z = 2 & \\ A_{nm} =& \int 2 \left( \dfrac{Z}{a_0} \right)^{\dfrac{3}{2}}e^{\dfrac{-Zr}{a_0}}\dfrac{1}{\sqrt{2}} \left( \dfrac{Z + 1}{a_0} \right)^{\dfrac{3}{2}} \left( 1 - \dfrac{( Z + 1)r}{2a_0} \right) e^{\dfrac{-(Z + 1)r}{2a_0}}r^2dr \\ A_{nm} &= \dfrac{2}{\sqrt{2}} \left( \dfrac{Z}{a_0} \right)^{\dfrac{3}{2}} \left( \dfrac{Z + 1}{a_0} \right)^{\dfrac{3}{2}} \int e^{\dfrac{-(3Z + 1)r}{2a_0}} \left(1 - \dfrac{(Z + 1)}{2a_0} \right) r^2dr \\ A_{nm} &= \dfrac{2}{\sqrt{2}}\left( \dfrac{Z}{a_0} \right)^{\dfrac{3}{2}}\left( \dfrac{Z + 1}{a_0} \right)^{\dfrac{3}{2}} \left[ \int r^2 e^{\dfrac{-(3Z + 1)}{2a_0}}dr - \int \dfrac{(Z + 1)r^3}{2a_0}e^{\dfrac{-(3Z + 1)r}{2a_0}} dr \right] \end{align}
Evaluating these integrals using integral equation 4 we obtain:
\begin{align} A_{nm} &= \dfrac{2}{\sqrt{2}}\left( \dfrac{Z}{a_0}\right)^{\dfrac{3}{2}} \left[ \dfrac{2}{\left( \dfrac{3Z + 1}{2a_0} \right)^3} - \left( \dfrac{Z + 1}{2a_0} \right) \dfrac{(3)(2)}{\left( \dfrac{3Z + 1}{2a_0}\right)^4} \right] \\ A_{nm} &= \dfrac{2}{\sqrt{2}}\left( \dfrac{Z}{a_0} \right)^{\dfrac{3}{2}}\left( \dfrac{Z + 1}{a_0} \right)^{\dfrac{3}{2}}\left[ \dfrac{2^4a_0^3}{(3Z + 1)^3} - (Z + 1)\dfrac{(3)2^4a_0^3}{(3Z + 1)^4} \right] \\ A_{nm} &= \dfrac{2}{\sqrt{2}}\left( \dfrac{Z}{a_0} \right)^{\dfrac{3}{2}}\left( \dfrac{Z + 1}{a_0}\right)^{\dfrac{3}{2}}\left[ \dfrac{-2^5a_0^3}{(3Z + 1)^4} \right] \\ A_{nm} &= -2 \dfrac{[2^3Z(Z + 1)]^{\dfrac{3}{2}}}{(3Z + 1)^4} \end{align}
The transition probability is the square of this amplitude:
$T_{nm} = \left( -2\dfrac{[2^3Z(Z + 1)]^{\dfrac{3}{2}}}{(3Z + 1)^4} \right)^2 = \dfrac{2^{11}Z^3(Z + 1)^3}{(3Z + 1)^8} = 0.25 \text{ (for Z = 1).} \nonumber$
The difference in these two results (parts a. and b.) will become negligible at large values of Z when the perturbation becomes less significant as in the case of Z = 1.

## Q2

$$\vec{\varepsilon}$$ is along Z (lab fixed), and $$\vec{\mu}$$ is along z (the C-I module fixed bond). The angle between Z and z is $$\beta$$:
$\vec{\varepsilon}\dot{\vec{\mu}} = \varepsilon\mu Cos \beta = \varepsilon\mu D^{1*}_{00} (\alpha\beta\gamma ) \nonumber$
So,
\begin{align} I = \langle D_{M'K'}^{J'} | \vec{\varepsilon}\dot{\vec{\mu}} | D_{MK}^J \rangle &= \int D_{M'K'}^{J'} \vec{\varepsilon}\dot{\vec{\mu}}D_{MK}^J Sin \beta d\beta d\gamma d\alpha \\ &= \varepsilon\mu \int D_{M'K'}^{J'} D_{00}^{1*}D_{MK}^J Sin \beta d\beta d\gamma d\alpha . \\ \text{Now use: } & \\ & D_{M'n'}^{J'*}D_{00}^{1*} = \sum\limits_{jmn} \langle J'M'10 | jm\rangle^*D_{mn}^{j*} \langle jn|J'K' 10\rangle^{*}, \\ \text{to obtain: } & \\ I &= \varepsilon\mu \sum\limits_{jmn} \langle J'M' 10 |jm\rangle *\langle jn |J'K'10 \rangle * \int D_{mm}^{j*}D_{MK}^J Sin \beta d\beta d\gamma d\alpha .\\ \text{ Now use: } & \\ & \int D_{mm}^{j*} D_{MK}^J Sin \beta d\beta d\gamma d\alpha = \dfrac{8\pi^2}{2J + 1} \delta_{Jj}\delta_{Mm}\delta_{Kn}, \\ \text{to obtain: } & \\ I &= \varepsilon\mu \dfrac{8\pi^2}{2J + 1} \sum\limits_{jmn} \langle J'M' 10 |jm \rangle * \langle jn|J'K' 10\rangle *\delta_{Jj}\delta_{Mm}\delta_{Kn} \\ &= \varepsilon\mu \dfrac{8\pi^2}{2J + 1} \langle J'M'10 |JM \rangle \langle JK|J'K'10 \rangle . \\ \text{We use: } & \\ & \langle JK|J'K' 10\rangle = \sqrt{2J + 1}(-i)^{J' - 1 + K)} \begin{pmatrix} J' & 1 & J \\ K' & 0 & K \end{pmatrix} \\ \text{and, } &\\ & \langle J'M'10|JM \rangle = \sqrt{2J + 1}(-i)^{(J' - 1 + M)}\begin{pmatrix} J' & 1 & J \\ M' & 0 & M \end{pmatrix} \\ \text{to give: } & \\ & I = \varepsilon\mu \dfrac{8\pi^2}{2J + 1}\sqrt{2J + 1}(-i)^{(J' - 1 + M)}\begin{pmatrix} J' & 1 & J \\ M' & 0 & M \end{pmatrix}\sqrt{2J + 1}(-i)^{(J' - 1 + K)}\begin{pmatrix} J' & 1 & J \\ K' & 0 & K \end{pmatrix} \\ & = \varepsilon\mu 8\pi^2 (-i)^{(J' - 1 + M + J' - 1 + K)}\begin{pmatrix} J' & 1 & J \\ M' & 0 & M \end{pmatrix} \begin{pmatrix} J' & 1 & J \\ K' & 0 & K \end{pmatrix} \\ & = \varepsilon\mu 8\pi^2 (-i)^{(M + K)}\begin{pmatrix} J' & 1 & J \\ M' & 0 & M \end{pmatrix} \begin{pmatrix} J' & 1 & J \\ K' & 0 & K \end{pmatrix} \end{align}
The 3-J symbols vanish unless: K' + 0 = K and M' + 0 = M.
So,
$I = \varepsilon\mu 8 \pi^2 (-i)^{(M + K)}\begin{pmatrix} J' & 1 & J \\ M & 0 & M \end{pmatrix}\begin{pmatrix} J' & 1 & J \\ K & 0 & K \end{pmatrix} \delta_{M'M}\delta_{K'K} \nonumber$
b. $$\begin{pmatrix} J' & 1 & J \\ M & 0 & M \end{pmatrix}$$ and $$\begin{pmatrix} J' & 1 & J \\ K & 0 & K \end{pmatrix}$$ vanish unless J' = J + 1, J, J - 1$$\therefore \Delta J = \pm 1, 0$$
The K quantum number can not change because the dipole moment lies along the molecule's $$C_3$$ axis and the light's electric field thus can exert no torque that twists the molecule about this axis. As a result, the light can not induce transitions that excite the molecule's spinning motion about this axis.

## Q3

a. B atom: $$as^22s^22p^1 \text{, }^2P$$ ground state L = 1, S = $$\dfrac{1}{2}$$, gives degeneracy ((2L + 1)(2S + 1)) of 6.
O atom: $$1s^22s^22p^4$$, $$^2P$$ ground state L = 1, S = 1, gives a degeneracy ((2L + 1)(2S + 1)) of 9.
The total number of states formed is then (6)(0) = 54.
b. We need only consider the p orbitals to find the low lying molecular states:

Which, in reality look like this:

This is the correct ordering to give a $$^2\sum^+$$ ground state. The only low-lying electron configurations are $$1\pi^35\sigma^2 \text{ or } 1\pi^45\sigma^1$$. These lead to $$^2\Pi \text{ and } ^2\Sum^+$$ states, respectively.
c. The bond orders in both states are $$2\dfrac{1}{2}$$.
d. The $$^2\sum$$ is + and g/u cannot be specified since this is a heteronuclear molecule.
e. Only one excited state, the $$^2\Pi$$, is spin-allowed to radiate to the $$^2\sum^+$$. Consider symmetries of transitio moment operators that arise in the E1, E2 and M1 contributions to the transition rate
Electric dipole allowed: $$z \rightarrow \sum^+, x, y \rightarrow \Pi , \therefore \text{ the } ^2\Pi \rightarrow ^2\sum^+$$ is electric dipole allowed via a perpendicular band.
Magnetic dipole allowed: $$R_z \rightarrow \sum^-, R_{x,y} \rightarrow \Pi , \therefore \text{ the } ^\sum /rightarrow ^2\sum^+$$ is magnetic dipole allowed.
Electric quadrupole allowed: $$x^2 + y^2, z^2 \rightarrow \sum^+, xy, yz \rightarrow \Pi, x^2 - y^2, xy \rightarrow \Delta \therefore \text{ the } ^2\Pi \rightarrow ^2\sum^+$$ is electric quadrupole allowed as well.
f. Since ionization will remove a bonding electron, the BO$$^+$$ bond is weaker than the BO bond.
g. The ground state BO$$^+$$ is $$^1\sum^+$$ corresponding to a $$^1\pi^4$$ electron configuration. An electron configuration of $$1\pi^3 5\sigma^1$$ leads to a $$^3\Pi$$ and a $$^1\Pi$$ state. The $$^3Pi$$ will be lower in energy. A $$1\pi^2 5\sigma^2$$ confirmation will lead to higher lying states of $$^3\sum^- , ^1\Delta, \text{ and } ^1\sum^+$$.
h. There should be 3 bands corresponding to formation of BO$$^+$$ in the $$^1\sum^+, ^3\Pi \text{, and } ^\Pi$$ states. Since each of these involves removing a bonding electron, the Franck-Conden integrals will be appreciable for several vibrational levels, and thus a vibrational progression should be observed.

## Q4

a. The bending $$(\pi )$$ vibration is degenerate.
b. \begin{align} H--&-C\equiv N \\ \Uparrow & \\ & \text{bending fundamental} \end{align}
c. \begin{align} H--&-C\equiv N \\ \Uparrow & \\ & \text{stretching fundamental} \end{align}
d. CH stretch ($$\nu_3$$ in figure) is $$\sigma$$ CN stretch is $$\sigma$$ and HCN $$(\nu_2$$ in figure) bend is $$\pi$$.
e. Under z $$(\sigma )$$light the CN stretch and the CH stretch can be exited, since $$\psi_0 = \sigma, \psi_1 = \sigma \text{ and } z = \sigma$$ provides coupling.
f. Under x,y ($$\pi$$) light the HCN bend can be excited, since $$\psi_0 = \sigma, \psi_1 = \pi$$ and x,y = $$\pi$$ provides coupling.
g. The bending vibration is active under (x,y) perpendicular polarized light. $$\Delta J = 0, \pm 1$$ are the selection rules for $$\perp$$ transitions. The CH stretching vibration is active under (z) $$\|$$ polarized light. $$\Delta J = \pm 1$$ are the selection rules for $$\|$$ transitions.

This page titled 22.5.4: iv. Problem Solutions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.