# 11.3: The Slater-Condon Rules

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

The Slater–Condon rules express integrals of one- and two-body operators over wavefunctions constructed as Slater determinants of orthonormal orbitals in terms of the individual orbitals. In doing so, the original integrals involving N-electron wavefunctions are reduced to sums over integrals involving at most two molecular orbitals

i. If |> and |'> are identical, then

$\langle|F + G|\rangle = \sum \limits_i \langle\phi_i| f |\phi_i\rangle + \sum\limits_{i>j}\left[ \langle\phi_i \phi_j | g | \phi_i \phi_j - \langle \phi_i \phi_j | g | \phi_j \phi_i \rangle \right], \nonumber$

where the sums over i and j run over all spin-orbitals in | >;

ii. If | > and | '> differ by a single spin-orbital mismatch ( $$(\phi_p \neq \phi_p'$$ ),

$\langle | F + G |' \rangle = \langle \phi_p | f | \phi_p' \rangle + \sum\limits_j \left[ \langle \phi_p\phi_j | g | \phi_p'\phi_j \rangle - \langle \phi_p\phi_j | g | \phi_j\phi_p' \rangle \right], \nonumber$

where the sum over j runs over all spin-orbitals in | > except $$\phi_p$$ ;

iii. If | > and | '> differ by two spin-orbitals ($$\phi_p \neq \phi_p'$$ and ( $$\phi_q \neq \phi_q'$$),

$\langle | F + G | '\rangle = \langle \phi_p \phi_q | g | \phi_p' \phi_q' \rangle - \langle \phi_p \phi_q | g | \phi_q' \phi_p' \rangle \nonumber$

(note that the F contribution vanishes in this case);

iv. If | > and | '> differ by three or more spin orbitals, then $< | F + G | '> = 0; \nonumber$

v. For the identity operator I, the matrix elements < | I | '> = 0 if | > and | '> differ by one or more spin-orbitals (i.e., the Slater determinants are orthonormal if their spin-orbitals are).

Recall that each of these results is subject to multiplication by a factor of $$(-1)^{N_p}$$ to account for possible ordering differences in the spin-orbitals in | > and | '>.

In these expressions, $< \phi_i | f | \phi_j > \nonumber$ is used to denote the one-electron integral $\int \phi_i^{\text{*}}(r)f(r)\phi_j(r)dr \nonumber$ and $$< \phi_i\phi_j | g | \phi_k\phi_l >$$ (or in short hand notation < i j| k l >) represents the two-electron integral

$\int \phi_i^{\text{*}}(r)\phi_j^{\text{*}}(r')g(r,r')\phi_k(r)\phi_l(r')drdr' \nonumber$

The notation < i j | k l> introduced above gives the two-electron integrals for the g(r,r') operator in the so-called Dirac notation, in which the i and k indices label the spin-orbitals that refer to the coordinates r and the j and l indices label the spin-orbitals referring to coordinates r'. The r and r' denote $$r, \theta, \phi, \sigma \text{ and } r', \theta ', \phi ', \sigma '$$ (with $$\sigma \text{ and } \sigma ' \text{ being the } \alpha \text{ or } \beta$$ spin functions). The fact that r and r' are integrated and hence represent 'dummy' variables introduces index permutational symmetry into this list of integrals. For example,

$< i j | k l > = < j i | l k > = < k l | i j >^{\text{*}} = < l k | j i >^{\text{*}}; \nonumber$

the final two equivalences are results of the Hermitian nature of g(r,r').

It is also common to represent these same two-electron integrals in a notation referred to as Mulliken notation in which:

$\int\phi_i^{\text{*}}(r)\phi_j^{\text{*}}(r') g(r,r')\phi_k(r)\phi_l(r')drdr' = (i k | j l). \nonumber$

Here, the indices i and k, which label the spin-orbital having variables r are grouped together, and j and l, which label spin-orbitals referring to the r' variables appear together. The above permutational symmetries, when expressed in terms of the Mulliken integral list read:

$(i k | j l) = (j l | i k) = (k i | l j)^{\text{*}} = (l j | k i)^{\text{*}}. \nonumber$

If the operators f and g do not contain any electron spin operators, then the spin integrations implicit in these integrals (all of the $$\phi_i$$ are spin-orbitals, so each $$\phi$$ is accompanied by an $$\alpha$$ or $$\beta$$ spin function and each $$\phi^{\text{*}}$$ involves the adjoint of one of the $$\alpha$$ or $$\beta$$ spin functions) can be carried out as $$<\alpha|\alpha>=1, <\alpha |\beta>=0, <\beta |\alpha >=0, <\beta |\beta>=1$$, thereby yielding integrals over spatial orbitals. These spin integration results follow immediately from the general properties of angular momentum eigenfunctions detailed in Appendix G; in particular, because $$\alpha \text{ and } \beta$$ are eigenfunctions of $$S_Z$$ with different eigenvalues, they must be orthogonal $$<\alpha |\beta > = <\beta | \alpha > = 0$$.

The essential results of the Slater-Condon rules are:

1. The full N! terms that arise in the N-electron Slater determinants do not have to be treated explicitly, nor do the N!(N! + 1)/2 Hamiltonian matrix elements among the N! terms of one Slater determinant and the N! terms of the same or another Slater determinant
2. All such matrix elements, for any one- and/or two-electron operator can be expressed in terms of one- or two-electron integrals over the spin-orbitals that appear in the determinants.
3. The integrals over orbitals are three or six dimensional integrals, regardless of how many electrons N there are.
4. These integrals over mo's can, through the LCAO-MO expansion, ultimately be expressed in terms of one- and two-electron integrals over the primitive atomic orbitals. It is only these ao-based integrals that can be evaluated explicitly (on high speed computers for all but the smallest systems).

This page titled 11.3: The Slater-Condon Rules is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.