Skip to main content
Chemistry LibreTexts

12.6: The Equilibrium Approximation

  • Page ID
    84370
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In many cases, the formation of a reactive intermediate (or even a longer lived intermediate) involves a reversible step. This is the case if the intermediate can decompose to reform reactants with a significant probability as well as moving on to form products. In many cases, this will lead to a pre-equilibrium condition in which the equilibrium approximation can be applied. An example of a reaction mechanism of this sort is

    \[ A + B \xrightleftharpoons [k_1]{k_{-1}} AB \nonumber \]

    \[ AB \xrightarrow{k_2} C \nonumber \]

    Given this mechanism, the application of the steady state approximation is cumbersome. However, if the initial step is assumed to achieve equilibrium, an expression can be found for \([AB]\). In order to derive this expression, one assumes that the rate of the forward reaction is equal to the rate of the reverse reaction for the initial step in the mechanism.

    \[ k_{1}[A][B] = k_{-1}[AB] \nonumber \]

    or

    \[\dfrac{ k_{1}[A][B]}{k_{-1}} = [AB] \nonumber \]

    This expression can be substituted into an expression for the rate of formation of the product \(C\):

    \[\dfrac{d[C]}{dt} = k_2[AB] \nonumber \]

    or

    \[\dfrac{d[C]}{dt} = \dfrac{ k_2 k_{1}}{k_{-1}}[A][B] \nonumber \]

    Which predicts a reaction rate law that is first order in \(A\), first order in \(B\), and second order overall.

    Example \(\PageIndex{1}\):

    Given the following mechanism, apply the equilibrium approximation to the first step to predict the rate law suggested by the mechanism.

    \[ A + A \xrightleftharpoons [k_1]{k_{-1}} A_2 \nonumber \]

    \[ A_2+B \xrightarrow{k_2} C + A \nonumber \]

    Solution

    If the equilibrium approximation is valid for the first step,

    \[ k_{1}[A]^2 = k_{-1}[A_2] \nonumber \]

    or

    \[\dfrac{ k_{1}[A]^2}{k_{-1}} \approx [A_2] \nonumber \]

    Plugging this into the rate equation for the second step

    \[\dfrac{d[C]}{dt} = k_2[A_2][B] \nonumber \]

    yields

    \[\dfrac{d[C]}{dt} = \dfrac{ k_2k_{1}}{k_{-1}} [A]^2[B] \nonumber \]

    Thus, the rate law has the form

    \[\text{rate} = k' [A]^2[B] \nonumber \]

    which is second order in \(A\), first order in \(B\) and third order over all, and in which the effective rate constant (\(k'\) is

    \[ k' = \dfrac{k_2k_1}{k_{-1}}. \nonumber \]

    Sometimes, the equilibrium approximation can suggest rate laws that have negative orders with respect to certain species. For example, consider the following reaction

    \[A + 2B \rightarrow 2C \nonumber \]

    A proposed mechanism for which might be

    \[ A + B \xrightleftharpoons [k_1]{k_{-1}} I + C \nonumber \]

    \[ I+ B \xrightarrow{k_2} C \nonumber \]

    in which \(I\) is an intermediate. Applying the equilibrium approximation to the first step yields

    \[ k_{1}[A][B] = k_{-1}[I][C] \nonumber \]

    or

    \[\dfrac{ k_{1}[A][B]}{k_{-1}[C]} \approx [I] \nonumber \]

    Substituting this into an expression for the rate of formation of \(C\), one sees

    \[\dfrac{d[C]}{dt} = k_{2} [I] [B] \nonumber \]

    or

    \[\dfrac{d[C]}{dt} = \dfrac{ k_{1}[A][B]}{k_{-1}[C]} [B] = \dfrac{ k_{2} k_{1}[A][B]}{k_{-1}[C]} \nonumber \]

    The rate law is then of the form

    \[\text{rate} = k \dfrac{[A][B]^2}{[C]} \nonumber \]

    which is first order in \(A\), second order in \(B\), negative one order in \(C\), and second order overall. Also,

    \[ k'=\dfrac{k_2k_1}{k_{-1}}. \nonumber \]

    In this case, the negative order in \(C\) means that a buildup of compound \(C\) will cause the reaction to slow. These sort of rate laws are not uncommon for reactions with a reversible initial step that forms some of the eventual reaction product.


    This page titled 12.6: The Equilibrium Approximation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.

    • Was this article helpful?