Skip to main content
Chemistry LibreTexts

9.2: Chemical Potential

  • Page ID
    84345
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Equilibrium can be understood as accruing at the composition of a reaction mixture at which the aggregate chemical potential of the products is equal to that of the reactants. Consider the simple reaction

    \[A(g) \rightleftharpoons B(g) \nonumber \]

    The criterion for equilibrium will be

    \[ \mu_A=\mu_B \nonumber \]

    If the gases behave ideally, the chemical potentials can be described in terms of the mole fractions of \(A\) and \(B\)

    \[ \mu_A^o + RT \ln\left( \dfrac{p_A}{p_{tot}} \right) = \mu_B^o + RT \ln\left( \dfrac{p_B}{p_{tot}} \right) \label{eq2} \]

    where Dalton’s Law has been used to express the mole fractions.

    \[ \chi_i = \dfrac{p_i}{p_{tot}} \nonumber \]

    Equation \ref{eq2} can be simplified by collecting all chemical potentials terms on the left

    \[ \mu_A^o - \mu_B^o = RT \ln \left( \dfrac{p_B}{p_{tot}} \right) - RT \ln\left( \dfrac{p_A}{p_{tot}} \right) \label{eq3} \]

    Combining the logarithms terms and recognizing that

    \[\mu_A^o - \mu_B^o –\Delta G^o \nonumber \]

    for the reaction, one obtains

    \[–\Delta G^o = RT \ln \left( \dfrac{p_B}{p_{A}} \right) \nonumber \]

    And since \(p_A/p_B = K_p\) for this reaction (assuming perfectly ideal behavior), one can write

    \[ \Delta G^o = RT \ln K_p \nonumber \]

    Another way to achieve this result is to consider the Gibbs function change for a reaction mixture in terms of the reaction quotient. The reaction quotient can be expressed as

    \[ Q_p = \dfrac{\prod_i p_i^{\nu_i}}{\prod_j p_j^{\nu_j}} \nonumber \]

    where \(\nu_i\) are the stoichiometric coefficients for the products, and \(\nu_j\) are those for the reactants. Or if the stoichiometric coefficients are defined by expressing the reaction as a sum

    \[ 0 =\sum_i \nu_i X_i \nonumber \]

    where \(X_i\) refers to one of the species in the reaction, and \(\nu_i\) is then the stoichiometric coefficient for that species, it is clear that \(\nu_i\) will be negative for a reactant (since its concentration or partial pressure will reduce as the reaction moves forward) and positive for a product (since the concentration or partial pressure will be increasing.) If the stoichiometric coefficients are expressed in this way, the expression for the reaction quotient becomes

    \[Q_p = \prod_i p_i^{\nu_i} \nonumber \]

    Using this expression, the Gibbs function change for the system can be calculated from

    \[ \Delta G =\Delta G^o + RT \ln Q_p \nonumber \]

    And since at equilibrium

    \[\Delta G = 0 \nonumber \]

    and

    \[Q_p=K_p \nonumber \]

    It is evident that

    \[ \Delta G_{rxn}^o = -RT \ln K_p \label{triangle} \]

    It is in this simple way that \(K_p\) and \(\Delta G^o\) are related.

    It is also of value to note that the criterion for a spontaneous chemical process is that \(\Delta G_{rxn}\ < 0\), rather than \(\Delta G_{rxn}^o\), as is stated in many texts! Recall that \(\Delta G_{rxn}^o\) is a function of all of the reactants and products being in their standard states of unit fugacity or activity. However, the direction of spontaneous change for a chemical reaction is dependent on the composition of the reaction mixture. Similarly, the magnitude of the equilibrium constant is insufficient to determine whether a reaction will spontaneously form reactants or products, as the direction the reaction will shift is also a function of not just the equilibrium constant, but also the composition of the reaction mixture!

    Example \(\PageIndex{1}\):

    Based on the data below at 298 K, calculate the value of the equilibrium constant (\(K_p\)) for the reaction

    \[2 NO(g) + O_2(g) \rightleftharpoons 2 NO_2(g) \nonumber \]

    \(NO(g)\) \(NO_2(g)\)
    \(G_f^o\) (kJ/mol) 86.55 51.53
    Solution

    First calculate the value of \(\Delta G_{rxn}^o\) from the \(\Delta G_{f}^o\) data.

    \[ \Delta G_{rxn}^o = 2 \times (51.53 \,kJ/mol) - 2 \times (86.55 \,kJ/mol) = -70.04 \,kJ/mol \nonumber \]

    And now use the value to calculate \(K_p\) using Equation \ref{triangle}.

    \[ -70040\, J/mol = -(8.314 J/(mol\, K) (298 \, K) \ln K_p \nonumber \]

    \[ K_p = 1.89 \times 10^{12} \nonumber \]

    Note: as expected for a reaction with a very large negative \(\Delta G_{rxn}^o\), the equilibrium constant is very large, favoring the formation of the products.


    This page titled 9.2: Chemical Potential is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.

    • Was this article helpful?