Skip to main content
Chemistry LibreTexts

5.6: Entropy and Disorder

  • Page ID
    84321
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A common interpretation of entropy is that it is somehow a measure of chaos or randomness. There is some utility in that concept. Given that entropy is a measure of the dispersal of energy in a system, the more chaotic a system is, the greater the dispersal of energy will be, and thus the greater the entropy will be. Ludwig Boltzmann (1844 – 1906) (O'Connor & Robertson, 1998) understood this concept well, and used it to derive a statistical approach to calculating entropy. Boltzmann proposed a method for calculating the entropy of a system based on the number of energetically equivalent ways a system can be constructed.

    Boltzmann proposed an expression, which in its modern form is:

    \[S = k_b \ln(W) \label{Boltz} \]

    This rather famous equation is etched on Boltzmann’s grave marker in commemoration of his profound contributions to the science of thermodynamics (Figure \(\PageIndex{1}\)).

    561.jpg
    562.jpg
    Figure \(\PageIndex{1}\): Ludwig Boltzmann (1844 - 1906)
    Example \(\PageIndex{1}\):

    Calculate the entropy of a carbon monoxide crystal, containing 1.00 mol of \(\ce{CO}\), and assuming that the molecules are randomly oriented in one of two equivalent orientations.

    Solution

    Using the Boltzmann formula (Equation \ref{Boltz}):

    \[S = nK \ln (W) \nonumber \]

    And using \(W = 2\), the calculation is straightforward.

    \[ \begin{align*} S &= \left(1.00 \, mol \cot \dfrac{6.022\times 10^{23}}{1\,mol} \right) (1.38 \times 10^{-23} J/K) \ln 2 \\ &= 5.76\, J/K \end{align*} \]


    This page titled 5.6: Entropy and Disorder is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.