Skip to main content
Chemistry LibreTexts

14.5: Problems

  • Page ID
    106894
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Problem \(\PageIndex{1}\)

    Given the following vectors in 3D:

    \[\begin{aligned} \mathbf{v_1}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}\\ \mathbf{v_2}=\frac{1}{2}\hat{\mathbf{i}}-\frac{1}{2}\hat{\mathbf{k}}\\ \mathbf{v_3}=i \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\\ \mathbf{v_4}=-\hat{\mathbf{i}}+i \hat{\mathbf{j}}+\hat{\mathbf{k}} \end{aligned} \nonumber\]

    Calculate:

    1. \(\mathbf{v_1}-3\mathbf{v_2}\)
    2. \(\mathbf{v_3}+\frac{1}{2}\mathbf{v_4}\)
    3. \(\mathbf{v_1}\cdot\mathbf{v_2}\)
    4. \(\mathbf{v_3}\cdot\mathbf{v_4}\)
    5. \(\mathbf{v_1}\cdot\mathbf{v_3}\)
    6. \(\mathbf{v_1}\times\mathbf{v_2}\)
    7. \(|\mathbf{v_1}|\)
    8. \(|\mathbf{v_2}|\)
    9. \(|\mathbf{v_3}|\)
    10. \(|\mathbf{v_4}|\)
    11. \(\mathbf{\hat{v}_2}\)
    12. \(\mathbf{\hat{v}_4}\)

    What is the angle between \(\mathbf{v_1}\) and \(\mathbf{v_2}\)?

    Are \(\mathbf{v_3}\) and \(\mathbf{v_4}\) orthogonal?

    Write a vector orthogonal to both \(\mathbf{v_1}\) and \(\mathbf{v_2}\).


    This page titled 14.5: Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marcia Levitus via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?