# 14.5: Problems

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

##### Problem $$\PageIndex{1}$$

Given the following vectors in 3D:

\begin{aligned} \mathbf{v_1}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}\\ \mathbf{v_2}=\frac{1}{2}\hat{\mathbf{i}}-\frac{1}{2}\hat{\mathbf{k}}\\ \mathbf{v_3}=i \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\\ \mathbf{v_4}=-\hat{\mathbf{i}}+i \hat{\mathbf{j}}+\hat{\mathbf{k}} \end{aligned} \nonumber

Calculate:

1. $$\mathbf{v_1}-3\mathbf{v_2}$$
2. $$\mathbf{v_3}+\frac{1}{2}\mathbf{v_4}$$
3. $$\mathbf{v_1}\cdot\mathbf{v_2}$$
4. $$\mathbf{v_3}\cdot\mathbf{v_4}$$
5. $$\mathbf{v_1}\cdot\mathbf{v_3}$$
6. $$\mathbf{v_1}\times\mathbf{v_2}$$
7. $$|\mathbf{v_1}|$$
8. $$|\mathbf{v_2}|$$
9. $$|\mathbf{v_3}|$$
10. $$|\mathbf{v_4}|$$
11. $$\mathbf{\hat{v}_2}$$
12. $$\mathbf{\hat{v}_4}$$

What is the angle between $$\mathbf{v_1}$$ and $$\mathbf{v_2}$$?

Are $$\mathbf{v_3}$$ and $$\mathbf{v_4}$$ orthogonal?

Write a vector orthogonal to both $$\mathbf{v_1}$$ and $$\mathbf{v_2}$$.

This page titled 14.5: Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marcia Levitus via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.