# 9.7: Problems

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

##### Problem $$\PageIndex{1}$$

Determine whether the following differentials are exact or inexact. If they are exact, determine $$u=u(x,y)$$.

1. $$du=(2ax+by)dx+(bx+2cy)dy$$
2. $$du=(x^2-y^2)dx+(2xy)dy$$
##### Problem $$\PageIndex{2}$$

Determine whether dz is exact or inexact. If it is exact, determine $$z=z(P,T)$$.

$dz=-\frac{RT}{P^2}dP+\frac{R}{P}dT \nonumber$

##### Problem $$\PageIndex{3}$$

From Equation \ref{eq:dG}, and using the fact that $$G$$ is a state function, prove that the change in entropy ($$\Delta S$$) of one mole of an ideal gas whose pressure changes from an initial value $$P_1$$ to a final value $$P_2$$ at constant temperature is:

$\Delta S =-R \ln{\frac{P_2}{P_1}}\nonumber$

##### Problem $$\PageIndex{4}$$

From Equations \ref{eq:dU}-\ref{eq:dA}, and using the fact that $$U,H$$ and $$A$$ are state functions, derive the three corresponding Maxwell relations.

Add texts here. Do not delete this text first.

##### Problem $$\PageIndex{5}$$

Given the following differential:

$dz=xy dx + 2y dy\nonumber$

1. Determine if it is exact or inexact. If it is, obtain $$z(x,y)$$
2. Calculate the line integrals $$\int_c{dz}$$ for the paths enumerated below:
1. the line $$y=2x$$ from $$x=0$$ to $$x=2$$
2. the curve $$y = x^2$$ from $$x = 0$$ to $$x = 2$$
3. any other path of your choice that joins the same initial and final points.
##### Problem $$\PageIndex{6}$$

For a mole of a perfect monoatomic gas, the internal energy can be expressed as a function of the pressure and volume as

$U = \frac{3}{2}PV\nonumber$

1. Write the total differential of $$U$$, $$dU$$.
2. Calculate the line integrals $$\int_c{dU}$$ for the paths shown below ($$c_1, c_2, c_3$$):
3. Calculate $$U(V_f,P_f)-U(V_i,P_i)$$ and compare with the results of b) (Note: $$f$$ refers to the final state and $$i$$ to the initial state).
4. Considering your previous results, calculate $$\int_c{dU}$$ for the path below:

As defined in Section 9.3,

$\label{eq:dU} dU=T(S,V)dS-P(S,V)dV$

$\label{eq:dP} dH=T(S,P)dS+V(S,P)dP$

$\label{eq:dA} dA=-S(T,V)dT-P(T,V)dV$

$\label{eq:dG} dG=-S(T,P)dT+V(T,P)dP$

This page titled 9.7: Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marcia Levitus via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.