Skip to main content
Chemistry LibreTexts

8.6: Problems

  • Page ID
    107013
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Problem \(\PageIndex{1}\)

    Given a generic equation of state \(P = P(V, T, n)\), explain how you can obtain the derivative

    \[\frac{\partial V}{\partial T}_{P,n} \nonumber \]

    using the properties of partial derivatives we learned in this chapter.

    Problem \(\PageIndex{2}\)

    The thermodynamic equation:

    \[\left (\frac{\partial U}{\partial V} \right )_T=T\left (\frac{\partial P}{\partial T} \right )_V-P \nonumber \]

    shows how the internal energy of a system varies with the volume at constant temperature.

    Prove that

    1. \(\left (\frac{\partial U}{\partial V} \right )_T=0\) for an ideal gas.
    2. \(\left (\frac{\partial U}{\partial V} \right )_T=\frac{a}{V^2}\) for one mole of van der Waals gas (Equation \ref{c2v:eq:vdw})
    Problem \(\PageIndex{3}\)

    Consider one mole of a van der Waals gas (Equation \ref{c2v:eq:vdw}) and show that

    \[\left (\frac{\partial^2 P}{\partial V\partial T}\right )=\left (\frac{\partial^2 P}{\partial T\partial V} \right) \nonumber \]

    Problem \(\PageIndex{4}\)

    Consider a van der Waals gas (Equation \ref{c2v:eq:vdw}) and show that

    \[\left (\frac{\partial V}{\partial T}\right )_{P,n}=\frac{n R}{\left( P-\frac{n^2a}{V^2}+\frac{2n^3ab}{V^3} \right)} \nonumber \]

    Hint: Calculate derivatives that are easier to obtain and use the properties of partial derivatives to get the one the problem asks for. Do not use the answer in your derivation; obtain the derivative assuming you don’t know the answer and simplify your expression until it looks like the equation above.

    Problem \(\PageIndex{5}\)

    From the definitions of expansion coefficient (\(\alpha\)) and isothermal compressibility (\(\kappa\)):

    \[\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P,n} \nonumber \]

    and

    \[\kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T,n} \nonumber \]

    prove that

    \[\left(\frac{\partial P}{\partial T}\right)_{V,n}=\frac{\alpha}{\kappa} \nonumber \]

    independently of the equation of state used.

    Note: A common mistake in this problem is to assume a particular equation of state. Use the cycle rule to find the required relationship independently of any particular equation of state.

    Problem \(\PageIndex{6}\)

    Derive an equation similar to Equation \ref{c2v:eq:calculus2v_chain1}, but that relates

    \[\left ( \frac{\partial f}{\partial y} \right )_x \nonumber \]

    with

    \[\left ( \frac{\partial f}{\partial r} \right )_\theta \nonumber \]

    and

    \[\left ( \frac{\partial f}{\partial \theta} \right )_r \nonumber \]

    Problem \(\PageIndex{7}\)

    (Extra-credit level)

    The expression:

    \[\nabla^2=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2} \nonumber \]

    is known as the Laplacian operator in two dimensions.

    When applied to a function \(f(x,y)\), we get:

    \[\nabla^2f(x,y)=\frac{\partial^2f}{\partial x^2}+\frac{\partial^2f}{\partial y^2} \nonumber \]

    Express \(\nabla^2\) in polar coordinates (2D) assuming the special case where \(r=a\) is a constant.

    Problem \(\PageIndex{8}\)

    Calculate \(\int_{0}^{1}\int_{1}^{2}\int_{0}^{2}{\left( x^2+yz \right)\, dx\, dy\, dz}.\) Try three different orders of integration an verify you always get the same result.

    Problem \(\PageIndex{9}\)

    Calculate \(\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{\infty}{e^{-r}r^5\sin{\theta}\, dr\, d\theta\, d\phi}.\) Use only the formula sheet.

    Problem \(\PageIndex{10}\)

    How would Figure \(8.5.2\), reproduced below, look like for an ideal gas? Sketch the potential energy as a function of the distance between the atoms.

    Screen Shot 2019-10-25 at 2.25.06 PM.png

    Problem \(\PageIndex{11}\)

    From everything we learned in this chapter, and without doing any math, we should be able to calculate the sign (>0, <0, or 0) of the following derivatives:

    For an ideal gas:
    \[\left(\frac{\partial U}{\partial T}\right)_{V,n} \nonumber \]
    \[\left(\frac{\partial U}{\partial V}\right)_{T,n} \nonumber \]

    For a van der Vaals gas:
    \[\left(\frac{\partial U}{\partial T}\right)_{V,n} \nonumber \]
    \[\left(\frac{\partial U}{\partial V}\right)_{T,n} \nonumber \]

    Be sure you can write a short sentence explaining your answers.

    Problem \(\PageIndex{12}\)

    The critical point is the state at which the liquid and gas phases of a substance first become indistinguishable. A gas above the critical temperature will never condense into a liquid, no matter how much pressure is applied. Mathematically, at the critical point:

    \[\left(\frac{\partial P}{\partial V} \right)_{T,n}=0 \nonumber \]

    and

    \[ \left(\frac{\partial^2 P}{\partial V^2} \right)_{T,n}=0 \nonumber \]

    Obtain the critical constants of a van der Waals gas (Equation \ref{c2v:eq:vdw}) in terms of the parameters \(a\) and \(b\).

    Hint: obtain the first and second derivatives of \(P\) with respect to \(V\), make them equal to zero, and obtain \(T_c\) and \(V_c\) from these equations. Finally, replace these expressions in Equation \ref{c2v:eq:vdw} to obtain \(P_c\).

    Note

    As derived in Section 8.3,

    \[\label{c2v:eq:calculus2v_chain1} \left(\dfrac{\partial f}{\partial x}\right)_y=\cos{\theta}\left(\dfrac{\partial f}{\partial r}\right)_\theta-\dfrac{\sin{\theta}}{r}\left(\dfrac{\partial f}{\partial \theta}\right)_r \]

    As defined in Section 8.5, the Van der Waals is defined as:

    \[\label{c2v:eq:vdw} P=\frac{nRT}{V-nb}-a \left(\frac{n}{V}\right)^2 \]


    1. If you are not familiar with this you need to read about it before moving on

    This page titled 8.6: Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marcia Levitus via source content that was edited to the style and standards of the LibreTexts platform.