# 1.4: The Period of a Periodic Function

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

A function $$f(x)$$ is said to be periodic with period $$P$$ if $$f(x) = f(x + P)$$. In plain English, the function repeats itself in regular intervals of length $$P$$. The period of the function of Figure $$\PageIndex{1}$$ is $$2 \pi$$.

We know that the period of $$\sin (x)$$ is $$2 \pi$$, but what is the period of the function $$\sin (nx)$$?

The period of $$\sin (x)$$ is $$2 \pi$$, so:

$\sin (nx) = \sin (nx + 2 \pi) \nonumber$

By definition, for a periodic function of period $$P$$, the function repeats itself if we add $$P$$ to $$x$$:

$sin (nx) = \sin (n(x + P)) = \sin (nx + nP)) \nonumber$

Comparing the two equations: $$2 \pi = nP$$, and therefore $$\textcolor{red}{P = 2π/n}$$.

For example, the period of $$\sin (2x)$$ is $$\pi$$, and the period of $$\sin (3x)$$ is $$2 \pi/3$$ (see Figure $$\PageIndex{2}$$).

You can follow the same logic to prove that the period of $$\cos (nx)$$ is $$2 \pi/n$$. These are important results that we will use later in the semester, so keep them in mind!

Test yourself with this short quiz! http://tinyurl.com/k4wop6l

This page titled 1.4: The Period of a Periodic Function is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marcia Levitus via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.