Skip to main content
Chemistry LibreTexts

10.1: Exact Differentials

  • Page ID
    238798
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In general, if a differential can be expressed as

    \[ df(x,y) = X\,dx + Y\,dy\]

    the differential will be an exact differential if it follows the Euler relation

    \[\left( \dfrac{\partial X}{\partial y} \right)_x = \left( \dfrac{\partial Y}{\partial x} \right)_y \label{euler}\]

    In order to illustrate this concept, consider \(P(\overline{V}, T)\) using the ideal gas law.

    \[P= \dfrac{RT}{\overline{V}}\]

    The total differential of \(P\) can be written

    \[ dP = \left( - \dfrac{RT}{\overline{V}^2} \right) dV + \left( \dfrac{R}{\overline{V}} \right) dT \label{Eq10}\]

    Example \(\PageIndex{1}\): Euler Relation

    Does Equation \ref{Eq10} follow the Euler relation (Equation \ref{euler})?

    Solution

    Let’s confirm!

    \[ \begin{align*} \left[ \dfrac{1}{\partial T} \left( - \dfrac{RT}{\overline{V}^2} \right) \right]_\overline{V} &\stackrel{?}{=} \left[ \dfrac{1}{\partial \overline{V}} \left( \dfrac{R}{\overline{V}} \right) \right]_T \\[4pt] \left( - \dfrac{R}{\overline{V}^2} \right) &\stackrel{\checkmark }{=} \left( - \dfrac{R}{\overline{V}^2} \right) \end{align*} \]

    \(dP\) is, in fact, an exact differential.

    The differentials of all of the thermodynamic functions that are state functions will be exact. Heat and work, which are path functions, are not exact differential and \(dw\) and \(dq\) are called inexact differentials instead.

    Contributors and Attributions

    • Patrick E. Fleming (Department of Chemistry and Biochemistry; California State University, East Bay)


    This page titled 10.1: Exact Differentials is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.