Skip to main content
Chemistry LibreTexts

2.15: Gas Mixtures - Amagat's Law of Partial Volums

  • Page ID
    151666
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Amagat’s law of partial volumes asserts that the volume of a mixture is equal to the sum of the partial volumes of its components. For a mixture of components \(A\), \(B\), \(C\), etc., Amagat’s law gives the volume as

    \[V_{mixture}=V_A+V_B+V_C+\dots \nonumber \]

    For real gases, Amagat’s law is usually an even better approximation than Dalton’s law\({}^{6}\). Again, for mixtures of ideal gases, it is exact. For an ideal gas, the partial volume is

    \[V_A=\frac{n_ART}{P_{mixture}} \nonumber \]

    Since \(n_{mixture}=n_A+n_B+n_C+\dots\), we have, for a mixture of ideal gases,

    \[ \begin{align*} V_{mixture}&=\frac{n_{mixture}RT}{P_{mixture}} \\[4pt] &=\frac{\left(n_A+n_B+n_C+\dots \right)RT}{P_{mixture}} \\[4pt] &=V_A+V_B+V_C+\dots \end{align*} \]

    Applied to the mixture, the ideal-gas equation yields Amagat’s law. Also, we have \(V_A=x_AV_{mixture}\).


    This page titled 2.15: Gas Mixtures - Amagat's Law of Partial Volums is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.