Skip to main content
Library homepage
Chemistry LibreTexts

2.7: The Ideal Gas Constant and Boltzmann's Constant

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Having developed the ideal gas equation and analyzed experimental results for a variety of gases, we will have found the value of R. It is useful to have R expressed using a number of different energy units. Frequently useful values are

    \[ \begin{aligned} R & = 8.314 \text{ Pa m}^{3} \text{ K}^{-1} \text{ mol}^{-1} \\ ~ & = 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \\ ~ & = 0.08314 \text{ L bar K}^{-1} \text{ mol}^{-1} \\ ~ & = 1.987 \text{ cal K}^{-1} \text{ mol}^{-1} \\ ~ & = 0.08205 \text{ L atm K}^{-1} \text{ mol}^{-1} \end{aligned}\]

    We also need the gas constant expressed per molecule rather than per mole. Since there is Avogadro’s number of molecules per mole, we can divide any of the values above by \(\overline{N}\) to get \(R\) on a per-molecule basis. Traditionally, however, this constant is given a different name; it is Boltzmann’s constant, usually given the symbol \(k\).

    \[k={R}/{\overline{N}}=1.381\times {10}^{-23}\ \mathrm{J}\ {\mathrm{K}}^{-1}\ {\mathrm{molecule}}^{-1}\]

    This means that we can also write the ideal gas equation as \(PV=nRT=n\overline{N}kT\). Because the number of molecules in the sample, \(N\), is \(N=n\overline{N}\), we have


    This page titled 2.7: The Ideal Gas Constant and Boltzmann's Constant is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.