Skip to main content
Library homepage
 
Chemistry LibreTexts

15.8: Hermitian Matrices

  • Page ID
    107058
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A Hermitian matrix (or self-adjoint matrix) is a square matrix with complex entries that is equal to its own conjugate transpose. In other words, \(a_{ij}=a_{ji}^*\) for all entries. The elements in the diagonal need to be real, because these entries need to equal their complex conjugates: \(a_{ii}=a_{ii}^*\):

    \[\begin{pmatrix} a&{\color{red}b+ci}&{\color{blue}d+ei}\\ {\color{red}b-ci}&f&{\color{OliveGreen}g+hi}\\ {\color{blue}d-ei}&{\color{OliveGreen}g-hi}&j \end{pmatrix} \nonumber\]

    where all the symbols in this matrix except for \(i\) represent real numbers.

    Hermitian matrices are a generalization of the symmetric real matrices we just talked about, and they also have real eigenvalues, and eigenvectors that form a mutually orthogonal set.

    Need help? The link below contains solved examples:


    This page titled 15.8: Hermitian Matrices is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marcia Levitus via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.