Skip to main content
Chemistry LibreTexts

13.1.3: Examples

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)


    \[G(\omega) = {1 \over 2\pi}\int_{-\infty}^{\infty}\;dt\, e^{i\omega t} \langle {1 \over 2}[B(0),B(t)]_+\rangle \nonumber \]

    which is just the frequency spectrum corresponding to the autocorrelation function of \(B\). For different choices of \(B\), \(G(\omega)\) corresponds to different experimental measurements. Consider the example of a molecule with a transition dipole moment vector \(\mu\). If an electric field \(\textbf{E}(t)\) is applied, then the Hamiltonian \(H'\) becomes

    \[H' =-\mu \cdot \textbf{E}(t) \nonumber \]

    If we take \(\textbf{E}(t)=E(t) \hat{\text{z}} \), then

    \[H'=-\mu_z E(t) \nonumber \]

    Identifying \( B=\mu_z \), the spectrum becomes

    \[G(\omega) = {1 \over 2\pi}\int_{-\infty}^{\infty}\;dt\;e^{i\omega t}\langle {1 \over 2}[\mu_z(0),\mu_z(t)]_+\rangle \nonumber \]

    or for a general electric field, the result becomes

    \[G(\omega) = {1 \over 2\pi}\int_{-\infty}^{\infty}\;dt\; e^{i \omega t} \langle {1 \over 2} (\mu (0) \cdot \mu (t) + \mu (t) \cdot \mu(0) )\rangle \nonumber \]

    These spectra are the infrared spectra.

    As another example, consider a block of material placed in a magnetic field \({\cal H}(t) \) in the \(z\) direction. The spin \(S_z\) of each particle will couple to the magnetic field giving a Hamiltonian \(H' \)

    \[H' = -\sum_{i=1}^N S_{i,z}{\cal H}(t) \nonumber \]

    The net magnetization created by the field \( {m_z}\) is given by

    \[ m_z = {1 \over N}\sum_{i=1}^N S_{i,z} \nonumber \]

    so that

    \[ H' = -Nm_z{\cal H}(t) \nonumber \]

    Identify \(B = m_z \) (the extra factor of \(N\) just expresses the fact that \(H' \) is extensive). Then the spectrum is

    \[ G(\omega) = {1 \over 2\pi}\int_{-\infty}^{\infty}\;dt\;e^{i\omega t}\langle {1 \over 2}[m_z(0),m_z(t)]_+\rangle \nonumber \]

    which is just the NMR spectrum. In general for each correlation function there is a corresponding experiment that measures its frequency spectrum.

    To see what some specific lineshapes look like, consider as an ansatz a pure exponential decay for the correlation function \( C_{BB} (t) \):

    \[ C_{BB}(t) = \langle B^2\rangle e^{-\Gamma \vert t\vert} \nonumber \]

    The spectrum corresponding to this time correlation function is

    \[ G(\omega) = {1 \over 2\pi}\int_{-\infty}^{\infty}\;dt e^{i\omega t}C_{BB}(t) \nonumber \]

    and doing the integral gives

    \[ G(\omega) = {\langle B^2 \rangle \over \pi}{\Gamma \over \omega^2 + \Gamma^2} \nonumber \]

    which is shown in the figure below:

    Figure \(\PageIndex{1}\): Copy and Paste Caption here. (Copyright; author via source)

    We see that the lineshape is a Lorentzian with a width \( \Gamma \). As a further example, suppose \(C_{BB} (t) \) is a decaying oscillatory function:

    \[C_{BB}(t) = \langle B^2 \rangle e^{-\Gamma\vert t\vert}\cos\omega_0t \nonumber \]

    which describes well the behavior of a harmonic diatomic coupled to a bath. The spectrum can be shown to be

    \[ G(\omega) = {\langle B^2 \rangle \Gamma \over \pi}\left[{\Gamma ^2 + \omega ^2 + \omega ^2_0 \over \left ( \Gamma ^2 + (\omega - \omega _0 )^2 \right)\left(\Gamma^2 + (\omega+\omega_0)^2\right)}\right] \nonumber \]

    which contains two peaks at \( \omega = \pm \sqrt{\omega_0^2 - \Gamma^2} \) as shown in the figure below:

    Figure \(\PageIndex{2}\): Copy and Paste Caption here. (Copyright; author via source)

    This page titled 13.1.3: Examples is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark Tuckerman.