13.1.3: Examples
- Page ID
- 5297
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Define
\[G(\omega) = {1 \over 2\pi}\int_{-\infty}^{\infty}\;dt\, e^{i\omega t} \langle {1 \over 2}[B(0),B(t)]_+\rangle \nonumber \]
which is just the frequency spectrum corresponding to the autocorrelation function of \(B\). For different choices of \(B\), \(G(\omega)\) corresponds to different experimental measurements. Consider the example of a molecule with a transition dipole moment vector \(\mu\). If an electric field \(\textbf{E}(t)\) is applied, then the Hamiltonian \(H'\) becomes
\[H' =-\mu \cdot \textbf{E}(t) \nonumber \]
If we take \(\textbf{E}(t)=E(t) \hat{\text{z}} \), then
\[H'=-\mu_z E(t) \nonumber \]
Identifying \( B=\mu_z \), the spectrum becomes
\[G(\omega) = {1 \over 2\pi}\int_{-\infty}^{\infty}\;dt\;e^{i\omega t}\langle {1 \over 2}[\mu_z(0),\mu_z(t)]_+\rangle \nonumber \]
or for a general electric field, the result becomes
\[G(\omega) = {1 \over 2\pi}\int_{-\infty}^{\infty}\;dt\; e^{i \omega t} \langle {1 \over 2} (\mu (0) \cdot \mu (t) + \mu (t) \cdot \mu(0) )\rangle \nonumber \]
These spectra are the infrared spectra.
As another example, consider a block of material placed in a magnetic field \({\cal H}(t) \) in the \(z\) direction. The spin \(S_z\) of each particle will couple to the magnetic field giving a Hamiltonian \(H' \)
\[H' = -\sum_{i=1}^N S_{i,z}{\cal H}(t) \nonumber \]
The net magnetization created by the field \( {m_z}\) is given by
\[ m_z = {1 \over N}\sum_{i=1}^N S_{i,z} \nonumber \]
so that
\[ H' = -Nm_z{\cal H}(t) \nonumber \]
Identify \(B = m_z \) (the extra factor of \(N\) just expresses the fact that \(H' \) is extensive). Then the spectrum is
\[ G(\omega) = {1 \over 2\pi}\int_{-\infty}^{\infty}\;dt\;e^{i\omega t}\langle {1 \over 2}[m_z(0),m_z(t)]_+\rangle \nonumber \]
which is just the NMR spectrum. In general for each correlation function there is a corresponding experiment that measures its frequency spectrum.
To see what some specific lineshapes look like, consider as an ansatz a pure exponential decay for the correlation function \( C_{BB} (t) \):
\[ C_{BB}(t) = \langle B^2\rangle e^{-\Gamma \vert t\vert} \nonumber \]
The spectrum corresponding to this time correlation function is
\[ G(\omega) = {1 \over 2\pi}\int_{-\infty}^{\infty}\;dt e^{i\omega t}C_{BB}(t) \nonumber \]
and doing the integral gives
\[ G(\omega) = {\langle B^2 \rangle \over \pi}{\Gamma \over \omega^2 + \Gamma^2} \nonumber \]
which is shown in the figure below:
We see that the lineshape is a Lorentzian with a width \( \Gamma \). As a further example, suppose \(C_{BB} (t) \) is a decaying oscillatory function:
\[C_{BB}(t) = \langle B^2 \rangle e^{-\Gamma\vert t\vert}\cos\omega_0t \nonumber \]
which describes well the behavior of a harmonic diatomic coupled to a bath. The spectrum can be shown to be
\[ G(\omega) = {\langle B^2 \rangle \Gamma \over \pi}\left[{\Gamma ^2 + \omega ^2 + \omega ^2_0 \over \left ( \Gamma ^2 + (\omega - \omega _0 )^2 \right)\left(\Gamma^2 + (\omega+\omega_0)^2\right)}\right] \nonumber \]
which contains two peaks at \( \omega = \pm \sqrt{\omega_0^2 - \Gamma^2} \) as shown in the figure below: