# 12.2: Kubo Transform Expression for the Time Correlation Function

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

We shall derive the following expression for the quantum time correlation function

$\Phi_{AB}(t) = \int_0^{\beta}d\lambda\;\langle \dot{B}(-i\hbar\lambda)A(t)\rangle _0 \nonumber$

known as a Kubo transform relation. Since $${\dot{B} }$$ is given by the Heisenberg equation:

$\dot{B} = {1 \over i\hbar}[B,H_0] \nonumber$

it follows that

$\dot{B}(t) = -{1 \over i\hbar}e^{iH_0t/\hbar}[H_0,B(0)]e^{-iH_0t/\hbar} \nonumber$

Evaluating the expression at $$t=-i\hbar\lambda$$ gives

$\dot{B}(-i\hbar\lambda) = e^{\lambda H_0}{1 \over i\hbar}[B(0),H_0]e^{-\lambda H_0} \nonumber$

Thus,

$\Phi_{AB}(t) = \int_0^{\beta} d\lambda \langle e^{\lambda H_0} \left ({1 \over i\hbar}[B(0),H_0]\right)e^{-\lambda H_0}A(t)\rangle _0 \nonumber$

By performing the trace in the basis of eigenvectors of $$H_0$$, we obtain

\begin{align*} \Phi_{AB}(t) &= {1 \over Q}\int_0^{\beta}d\lambda\sum_n \langle n\vert e^{\lambda H_0} \left ({1 \over i\hbar}\right)[B(0),H_0]e^{-\lambda H_0}A(t)\vert n\rangle e^{-\beta E_n} \\[4pt] &= {1 \over Q}\int_0^{\beta}d\lambda\sum_{m,n} \langle n\vert e^{\lambda H_0}\left ( {1 \over i \hbar } \right ) \left [ B (0), H_0 \right ] e^{-\lambda H_0}\vert m\rangle \langle m\vert A(t)\vert n\rangle e^{-\beta E_n} \\[4pt] &= {1 \over Q}\int_0^{\beta}d\lambda\sum_{m,n} e^{\lambda E_n}e^{-\lambda E_m} {1 \over i \hbar } \langle n \vert [B(0),H_0]\vert m\rangle \langle m\vert A(t)\vert n\rangle e^{-\beta E_n} \\[4pt] &= {1 \over Q}\sum_{m,n} e^{-\beta E_n}{e^{\beta(E_n-E_m)}-1 \over (E_n - E_m) } {1 \over i\hbar } \langle n\vert[B(0),H_0]\vert m\rangle \langle m\vert A(t)\vert n\rangle e^{-\beta E_n} \end{align*}

But

$\langle n\vert[B(0),H_0]\vert m\rangle = \langle n\vert B(0) H_0 - H_0 B (0)\vert m\rangle = (E_m-E_n)\langle n\vert B(0)\vert m\rangle \nonumber$

Therefore,

\begin{align*} \Phi_{AB}(t) &= -{1 \over i\hbar Q}\sum_{m,n}\left(e^{-\beta E_n}-e^{-\beta E_m}\right)\langle n\vert B(0)\vert m\rangle \langle m\vert A(t)\vert n\rangle \\[4pt] &= -{1 \over i\hbar Q}\left[\sum_{m,n}e^{-\beta E_m}\langle m\vert A (t) \vert n \rangle \langle n \vert B (0) \vert m \rangle - \sum _{m,n} e^{-\beta E_n}\langle n\vert B(0)\vert m\rangle \langle m\vert A(t)\vert n\rangle \right] \\[4pt] &= { {i \over \hbar}\langle [A(t),B(0)]\rangle _0 } \end{align*} \nonumber

which proves the relation. The classical limit can be deduced easily from the Kubo transform relation:

$\Phi_{AB}(t) \longrightarrow \beta\langle \dot{B}(0)A(t)\rangle _0 \nonumber$

Note further, by using the cylic properties of the trace, that

$\langle \dot{B}(-i\hbar\lambda)B(t)\rangle _0 = -{d \over dt}\langle B(-i\hbar\lambda)B(t)\rangle _0 \nonumber$

This page titled 12.2: Kubo Transform Expression for the Time Correlation Function is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark Tuckerman.