# 10.5.2: The canonical ensemble

• • Mark Tuckerman
• New York University
$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

In analogy to the classical canonical ensemble, the quantum canonical ensemble is defined by

\begin{align*} \rho &= e^{-\beta H} \\[4pt] f(E_i) &= e^{-\beta E_i} \end{align*}

Thus, the quantum canonical partition function is given by

\begin{align*} Q(N,V,T) &= {\rm Tr}(e^{-\beta H}) \\[4pt] &= \sum_i e^{-\beta E_i} \end{align*}

and the thermodynamics derived from it are the same as in the classical case:

\begin{align*} A (N, V, T ) &= -{1 \over \beta}\ln Q(N,V,T) \\[4pt] E (N, V, T ) &=-{\partial \over \partial \beta}\ln Q(N,V,T) \\[4pt] P (N, V, T) &= {1 \over \beta}{\partial \over \partial V}\ln Q(N,V,T) \end{align*}

etc. Note that the expectation value of an observable $$A$$ is

$\langle A \rangle = {1 \over Q}{\rm Tr}(Ae^{-\beta H}) \nonumber$

Evaluating the trace in the basis of eigenvectors of $$H$$ (and of $${\rho }$$ ), we obtain

\begin{align*} \langle A \rangle &= {1 \over Q}\sum_i \langle E_i\vert Ae^{-\beta H} \vert E_i \rangle \\[4pt] &= {1 \over Q}\sum_i e^{-\beta E_i} \langle E_i\vert A\vert E_i\rangle \end{align*}

The quantum canonical ensemble will be particularly useful to us in many things to come.

This page titled 10.5.2: The canonical ensemble is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark Tuckerman.