# 10.4: A simple example - the quantum harmonic oscillator

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

As a simple example of the trace procedure, let us consider the quantum harmonic oscillator. The Hamiltonian is given by

$H = {P^2 \over 2m} + {1 \over 2}m\omega^2 X^2 \nonumber$

and the eigenvalues of $$H$$ are

$E_n = \left(n + {1 \over 2}\right)\hbar\omega,\;\;\;\;\;\;\;\;\;\;n=0,1,2,... \nonumber$

Thus, the canonical partition function is

$Q(\beta) = \sum_{n=0}^{\infty} e^{-\beta (n+1/2)\hbar\omega} = e^{-\beta \hbar \omega/2}\sum_{n=0}^{\infty}\left(e^{-\beta\hbar\omega}\right)^n \nonumber$

This is a geometric series, which can be summed analytically, giving

$Q(\beta) = {e^{-\beta \hbar\omega/2} \over 1-e^{-\beta \hbar \omega}} = {1 \over e^{\beta \hbar \omega / 2} - e^{-\beta \hbar\omega/2}}= {1 \over 2}csch(\beta\hbar\omega/2) \nonumber$

The thermodynamics derived from it as as follows:

1.
Free energy:

The free energy is

$A = -{1 \over \beta}\ln Q(\beta) = {\hbar\omega \over 2} +{1 \over \beta}\ln \left(1-e^{-\beta \hbar \omega}\right) \nonumber$

2.
Average energy:

The average energy $$E = \langle H \rangle$$ is

$E = -{\partial \over \partial \beta}\ln Q(\beta)= {\hbar\omega \over 2} + {\hbar \omega e^{-\beta \hbar \omega}}= \left({1 \over 2} + \langle n \rangle \right)\hbar\omega \nonumber$

3.
Entropy

The entropy is given by

$S = k\ln Q(\beta) + {E \over T} =-k\ln \left(1-e^{-\beta \hbar \omega} \right ) + {\hbar \omega \over T}{e^{-\beta \hbar \omega}\over 1-e^{-\beta \hbar \omega}} \nonumber$

Now consider the classical expressions. Recall that the partition function is given by

$Q(\beta) = {1 \over h} \int dp dx e^{-\beta \left({p^2 \over 2m} + {1 \over 2} m\omega ^2 x^2 \right )} = {1 \over h} \left ( {2 \pi m \over \beta} \right )^{1/2} = {2\pi \over \beta \omega h} ={1 \over \beta \hbar \omega} \nonumber$

Thus, the classical free energy is

$A_{\rm cl} = {1 \over \beta}\ln(\beta \hbar \omega) \nonumber$

In the classical limit, we may take $$\hbar$$ to be small. Thus, the quantum expression for $$A$$ becomes, approximately, in this limit:

$A_{\rm Q} \longrightarrow {\hbar \omega \over 2} + {1 \over \beta}\ln (\beta \hbar \omega) \nonumber$

and we see that

$A_{\rm Q} - A_{\rm cl} \longrightarrow {\hbar \omega \over 2} \nonumber$

The residual $${\hbar \omega \over 2}$$ (which truly vanishes when $$\hbar \rightarrow 0$$) is known as the quantum zero point energy. It is a pure quantum effect and is present because the lowest energy quantum mechanically is not $$E = 0$$ but the ground state energy $$E={\hbar\omega \over 2}$$.

This page titled 10.4: A simple example - the quantum harmonic oscillator is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark Tuckerman.