Skip to main content
Chemistry LibreTexts

10.1: Principles of quantum statistical mechanics

  • Page ID
    5260
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The problem of quantum statistical mechanics is the quantum mechanical treatment of an \(N\)-particle system. Suppose the corresponding \(N\)-particle classical system has Cartesian coordinates

    \[q_1,...,q_{3N} \nonumber \]

    and momenta

    \[p_1, \cdots , p_{3N} \nonumber \]

    and Hamiltonian

    \[H = \sum_{i=1}^{3N} {p_i^2 \over 2m_i} + U(q_1,...,q_{3N}) \nonumber \]

    Then, as we have seen, the quantum mechanical problem consists of determining the state vector \(\vert \Psi (t) \rangle \) from the Schrödinger equation

    \[H\vert\Psi(t)\rangle = i\hbar{\partial \over \partial t}\vert\Psi(t)\rangle \nonumber \]

    Denoting the corresponding operators, \(Q_1, \cdots , Q_{3N} \) and \(P_1, \cdots , P_{3N} \), we note that these operators satisfy the commutation relations:

    \[ \left[Q_i,Q_j\right] \nonumber \]

    \(=\)

    \( \left[P_i,P_j\right] = 0\)

     
    \[ \left[Q_i,P_j\right] \nonumber \] \(=\) \(\displaystyle i\hbar I \delta_{ij}\)  

    and the many-particle coordinate eigenstate \(\vert q_1...q_{3N}\rangle \) is a tensor product of the individual eigenstate \(\vert q_1\rangle ,...,\vert q_{3N}\rangle \):

    \[\vert q_1...q_{3N}\rangle = \vert q_1\rangle \cdots \vert q_{3N}\rangle \nonumber \]

    The Schrödinger equation can be cast as a partial differential equation by multiplying both sides by \(\langle q_1...q_{3N}\vert\):

    \[ \langle q_1...q_{3N}\vert H\vert\Psi(t)\rangle \nonumber \]

    \(=\)

    \( {\partial \over \partial t}\langle q_1...q_{3N}\vert\Psi(t)\rangle\)

     

    \[ \left[-\sum_{i=1}^{3N}{\hbar^2 \over 2m_i}{\partial^2 \over \partial q_i^2} +U(q_1,...,q_{3N})\right]\Psi(q_1,...,q_{3N},t) \nonumber \]

    \(=\)

    \( i\hbar {\partial \over \partial t}\Psi(q_1,...,q_{3N},t) \)

     

    where the many-particle wave function is \(\Psi(q_1,....,q_{3N},t) =\langle q_1...q_{3N}\vert\Psi(t)\rangle \). Similarly, the expectation value of an operator \(A=A(Q_1,...,Q_{3N},P_1,...,P_{3N})\) is given by

    \[\langle A \rangle = \int dq_1\cdots dq_{3N}\Psi^*(q_1,...,q_{3N}) A \left (q_1, \cdots, q_{3N}, {\hbar \over i}{\partial \over \partial q_1}, \cdots , {\hbar \over i}{\partial \over\partial q_{3N}}\right)\Psi(q_1,...,q_{3N}) \nonumber \]


    This page titled 10.1: Principles of quantum statistical mechanics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark Tuckerman.