Skip to main content
Chemistry LibreTexts

10.1: Principles of quantum statistical mechanics

  • Page ID
    5260
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The problem of quantum statistical mechanics is the quantum mechanical treatment of an \(N\)-particle system. Suppose the corresponding \(N\)-particle classical system has Cartesian coordinates

    \[q_1,...,q_{3N} \nonumber \]

    and momenta

    \[p_1, \cdots , p_{3N} \nonumber \]

    and Hamiltonian

    \[H = \sum_{i=1}^{3N} {p_i^2 \over 2m_i} + U(q_1,...,q_{3N}) \nonumber \]

    Then, as we have seen, the quantum mechanical problem consists of determining the state vector \(\vert \Psi (t) \rangle \) from the Schrödinger equation

    \[H\vert\Psi(t)\rangle = i\hbar{\partial \over \partial t}\vert\Psi(t)\rangle \nonumber \]

    Denoting the corresponding operators, \(Q_1, \cdots , Q_{3N} \) and \(P_1, \cdots , P_{3N} \), we note that these operators satisfy the commutation relations:

    \[ \left[Q_i,Q_j\right] \nonumber \]

    \(=\)

    \( \left[P_i,P_j\right] = 0\)

     
    \[ \left[Q_i,P_j\right] \nonumber \] \(=\) \(\displaystyle i\hbar I \delta_{ij}\)  

    and the many-particle coordinate eigenstate \(\vert q_1...q_{3N}\rangle \) is a tensor product of the individual eigenstate \(\vert q_1\rangle ,...,\vert q_{3N}\rangle \):

    \[\vert q_1...q_{3N}\rangle = \vert q_1\rangle \cdots \vert q_{3N}\rangle \nonumber \]

    The Schrödinger equation can be cast as a partial differential equation by multiplying both sides by \(\langle q_1...q_{3N}\vert\):

    \[ \langle q_1...q_{3N}\vert H\vert\Psi(t)\rangle \nonumber \]

    \(=\)

    \( {\partial \over \partial t}\langle q_1...q_{3N}\vert\Psi(t)\rangle\)

     

    \[ \left[-\sum_{i=1}^{3N}{\hbar^2 \over 2m_i}{\partial^2 \over \partial q_i^2} +U(q_1,...,q_{3N})\right]\Psi(q_1,...,q_{3N},t) \nonumber \]

    \(=\)

    \( i\hbar {\partial \over \partial t}\Psi(q_1,...,q_{3N},t) \)

     

    where the many-particle wave function is \(\Psi(q_1,....,q_{3N},t) =\langle q_1...q_{3N}\vert\Psi(t)\rangle \). Similarly, the expectation value of an operator \(A=A(Q_1,...,Q_{3N},P_1,...,P_{3N})\) is given by

    \[\langle A \rangle = \int dq_1\cdots dq_{3N}\Psi^*(q_1,...,q_{3N}) A \left (q_1, \cdots, q_{3N}, {\hbar \over i}{\partial \over \partial q_1}, \cdots , {\hbar \over i}{\partial \over\partial q_{3N}}\right)\Psi(q_1,...,q_{3N}) \nonumber \]


    This page titled 10.1: Principles of quantum statistical mechanics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark Tuckerman.