Skip to main content
Chemistry LibreTexts

27.1: Why This Chapter?

  • Page ID
    448858
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    The reflection of large two soap bubbles created by a man.
    Figure 27.1: Soap bubbles, so common yet so beautiful, are made from animal fat, a lipid. (credit: “Reflections in soap bubbles” by Image Picture Photography/Flickr, CC BY 2.0)

    Chapter Contents

    27.1 Waxes, Fats, and Oils

    27.2 Soap 27.3 Phospholipids 27.4 Prostaglandins and Other Eicosanoids 27.5 Terpenoids 27.6 Steroids 27.7 Biosynthesis of Steroids

    We’ve now covered two of the four major classes of biomolecules—proteins and carbohydrates—and have two remaining. In this chapter, we’ll cover lipids, the largest and most diverse class of biomolecules, looking both at their structure and function and at their metabolism.

    Lipids are naturally occurring organic molecules that have limited solubility in water and can be isolated from organisms by extraction with nonpolar organic solvents. Fats, oils, waxes, many vitamins and hormones, and most nonprotein cell-membrane components are some examples. Note that this definition differs from the sort used for carbohydrates and proteins in that lipids are defined by a physical property (solubility) rather than by structure. Of the many kinds of lipids, we’ll be concerned in this chapter with only a few: triacylglycerols, eicosanoids, terpenoids, and steroids.

    Lipids are classified into two broad types: those like fats and waxes, which contain ester linkages and can be hydrolyzed, and those like cholesterol and other steroids, which don’t have ester linkages and can’t be hydrolyzed.

    The first structure is an animal fat-a triester with R, R dash, and R double dash equal to carbon 11 to carbon 19 chains. The second structure is cholesterol.

    This page titled 27.1: Why This Chapter? is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.