Skip to main content
Chemistry LibreTexts

26.1: Why This Chapter?

  • Page ID
    448844
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    A close-up photograph of the face and upper arm of a marble statue depicting a man with a beard.
    Figure 26.1: The building blocks of life that we call proteins are aptly named after Proteus, the early Greek sea-god whose name means “first” or “primordial.” (credit: modification of work by Coyau/Wikimedia Commons, CC BY-SA 3.0)

    Chapter Contents

    26.1 Structures of Amino Acids

    26.2 Amino Acids and the Henderson–Hasselbalch Equation: Isoelectric Points 26.3 Synthesis of Amino Acids 26.4 Peptides and Proteins 26.5 Amino Acid Analysis of Peptides 26.6 Peptide Sequencing: The Edman Degradation 26.7 Peptide Synthesis 26.8 Automated Peptide Synthesis: The Merrifield Solid-Phase Method 26.9 Protein Structure 26.10 Enzymes and Coenzymes 26.11 How Do Enzymes Work? Citrate Synthase

    Continuing our look at the main classes of biomolecules, we’ll focus in this chapter on amino acids, the fundamental building blocks from which up to 150,000 or so different proteins in our bodies are made. We’ll then see how amino acids are incorporated into proteins and examine the structures of those proteins. Any understanding of biological chemistry would be impossible without this knowledge.

    Proteins occur in every living organism, are of many different types, and have many different biological functions. The keratin of skin and fingernails, the fibroin of silk and spider webs, and the estimated 50,000 or so enzymes that catalyze the biological reactions in our bodies are all proteins. Regardless of their function, all proteins have a fundamentally similar structure and are made up of many amino acids linked together in a long chain.

    Amino acids, as their name implies, are difunctional. They contain both a basic amino group and an acidic carboxyl group.

    The structure and ball-and-stick model of L-alanine. It is a carbon linked to an amine, carboxylic acid, dashed hydrogen and wedged methyl group.

    Their value as building blocks to make proteins stems from the fact that amino acids can join together into long chains by forming amide bonds between the –NH2 of one amino acid and the –CO2H of another. For classification purposes, chains with fewer than 50 amino acids are often called peptides, while the term protein is generally used for larger chains.

    Many amino acids link to generate the structure of protein. Arrows are used to represent the amide bonds in the structure. Wavy bonds denote bond extension.

    This page titled 26.1: Why This Chapter? is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.