Skip to main content
Chemistry LibreTexts

24.6: Biological Amines and the Henderson-Hasselbalch Equation

  • Page ID
    448822
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    We saw in Section 20.3 that the extent of dissociation of a carboxylic acid HA in an aqueous solution buffered to a given pH can be calculated with the Henderson–Hasselbalch equation. Furthermore, we concluded that at the physiological pH of 7.3 inside living cells, carboxylic acids are almost entirely dissociated into their carboxylate anions, RCO2.

    Henderson–Hasselbalch equation:

    pH = pKa + log[A][HA]solog[A][HA] = pH – pKapH = pKa + log[A][HA]solog[A][HA] = pH – pKa

    What about amine bases? In what form do they exist at physiological pH? As the amine (A = RNH2), or as the ammonium ion (HA = RNH3+)? Let’s take a 0.0010 M solution of methylamine at pH = 7.3, for example. According to Table 24.1, the pKa of methylammonium ion is 10.64, so from the Henderson–Hasselbalch equation, we have

    log[RNH2][RNH3+] = pH – pKa = 7.3 – 10.64 = –3.34[RNH2][RNH3+] = antilog(–3.34) = 4.6 × 10–4so[RNH2] = (4.6 × 10–4)[RNH3+]log[RNH2][RNH3+] = pH – pKa = 7.3 – 10.64 = –3.34[RNH2][RNH3+] = antilog(–3.34) = 4.6 × 10–4so[RNH2] = (4.6 × 10–4)[RNH3+]

    In addition, we know that

    [RNH2] + [RNH3+] = 0.0010 M[RNH2] + [RNH3+] = 0.0010 M

    Solving the two simultaneous equations gives [RNH3+] = 0.0010 M and [RNH2] = 5 × 10–7 M. In other words, at a physiological pH of 7.3, essentially 100% of the methylamine in a 0.0010 M solution exists in its protonated form as methylammonium ion. The same is true of other amine bases, so we always write cellular amines in their protonated form and amino acids in their ammonium carboxylate form to reflect their structures at physiological pH.

    The structure of alanine, an amino acid. The amino group is protonated at a pH equal to 7.3. The carboxylic acid group is dissociated at a pH equal to 7.3.

    This page titled 24.6: Biological Amines and the Henderson-Hasselbalch Equation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.