Skip to main content
Chemistry LibreTexts

14.6: Electrophilic Attack on Conjugated Dienes: Kinetic and Thermodynamic Control

  • Page ID
    32463
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Objectives

    After completing this section, you should be able to

    1. write an equation for the addition of one or two mole equivalents of a halogen or a hydrogen halide to a nonconjugated diene.
    2. write an equation for the addition of one or two mole equivalents of a halogen or a hydrogen halide to a conjugated diene.
    3. write the mechanism for the addition of one mole equivalent of hydrogen halide to a conjugated diene, and hence account for the formation of 1,2- and 1,4-addition products.
    4. explain the stability of allylic carbocations in terms of resonance.
    5. draw the resonance contributors for a given allylic carbocation.
    6. predict the products formed from the reaction of a given conjugated diene with one mole equivalent of halogen or hydrogen halide.
    7. predict which of the possible 1,2- and 1,4-addition products is likely to predominate when one mole equivalent of a hydrogen halide is reacted with a given conjugated diene.
    8. use the concept of carbocation stability to explain the ratio of the products obtained when a given conjugated diene is reacted with one mole equivalent of hydrogen halide.
    Key Terms

    Make certain that you can define, and use in context, the key terms below.

    • 1,2-addition
    • 1,4-addition
    Study Notes

    Notice that the numbers used in the expressions 1,2-addition and 1,4-addition do not refer to the positions of the carbon atoms in the diene molecule. Here, 1,2 indicates two neighbouring carbon atoms, while 1,4 indicates two carbon atoms which are separated in the carbon chain by two additional carbon atoms. Thus in 1,2- and 1,4-additions to 2,4-hexadiene, the additions actually occur at carbons 2 and 3, and 2 and 5, respectively.

    The term “monoadduct” should be interpreted as meaning the product or products formed when one mole of reagent adds to one mole of substrate. In the objectives above, this process is referred to as the addition of one mole equivalent (or one mol equiv).

    In Section 7.9 we saw that electrophilic addition to a simple alkene would follow Markovnikov’s rule, where the stability of the carbocation intermediate would increase: primary < secondary < tertiary. With conjugated dienes the allylic carbocation intermediately generated has different resonance forms. The following scheme represents the mechanism for the addition of HBr to 1,3-butadiene (at 0°C). Note the resonance contributors for the allylic carbocation intermediate and that the product resulting from the secondary cation is generated in higher yield than from the primary cation as you might expect from our discussions until now. However, in the next section you will see that the resulting product ratio can be drastically affected by a number of reaction conditions, including temperature.

    1,2 and 1,4 hydrogen bromide addition to 1,3-butadiene

    In Section 7.9 we saw that electrophilic addition to a simple alkene would follow Markovnikov’s rule. Markovnikov's rule states that for the electrophilic addition of HX, the carbocation intermediate forms on the double bond carbon with the greatest number of alkyl substitutents. Because the stability of carbocation intermediates increases as it number of alky groups increases (primary < secondary < tertiary), this regioselectivity is provided by preferably forming a more stable carbocation intermediate during the reaction. During the electrophilic addition of HBr to 2-methylpropene, the more stable tertiary carbocation intermediate is preferably formed which yields the Markovnikov addition product 2-bromo-2-methylpropane. Formation of 1-bromo-2-methylpropane does not occur because it would require the formation of a less stable primary carbocation intermediate.

    Example 1.png

    When an electrophilic addition is performed on a non-conjugated diene, the double bonds react in much the same manner as individual alkenes. During the addition of two equivalents of HBr to 1,4-pentadiene, a non-conjugated diene, Markovnikov's rule is still followed producing 2,4-dibromopentane as the product.

    Example 2.svg

    Conjugated dienes undergo the usual reactions of alkenes, such as catalytic hydrogenation, radical additions, and electrophilic additions more readily than most alkenes or dienes that have isolated double bonds. During the electrophilic addition of one equivalent of HX to a conjugated diene, the expected Markovnikov addition product is formed during a process called 1,2-addition. In addition, an unexpected product is formed from 1,4-addition, i.e. the halogen bonds at the terminal carbon atoms of a conjugated diene and the remaining double bond shifts to the 2,3-location. Note, the numbers (1 and 4) refer to which of the four carbons making up the conjugated diene the H and Br are bonded to in the products and are not used for the compounds IUPAC nomenclature. Although there are various methods for effecting the relative ratio of 1,2 and 1,4 addition products during the electrophilic addition to a conjugated diene, a mixture of these products is almost always produced. When one equivalent HBr undergoes electrophilic addition to 1,3-butadiene, 1,2 addition provides the expected Markovnikov product 3-bromo-1-butene in a 70% yield. This process is called a 1,2 addition because the hydrogen from HBr (labeled blue) bonds to the first carbon of the diene and the bromine from HBr bonds to the second carbon of the diene. The compound 1-bromo-2-butene is also produced in a 30% yield during the reaction as product of 1,4 addition. Here the hydrogen of HBr bonds to the first carbon of the diene and the Br bonds to the fourth carbon of the diene.

    Example 3.png

    The Mechanism for Electrophilic Addition of HBr to a Conjugated Diene

    Regardless if the 1,2 or 1,4 addition product is formed, the first step of the mechanism is the protonation of one of the double bonds. In the same manner as the electrophilic addition of HX to an alkene, the protonation occurs regioselectively to give the more stable carbocation. In the case of a conjugated diene, the more stable cation is not only secondary, but also allylic, and therefore enjoys the stabilization created from the positive charge being distributed over two carbons by resonance. The resonance hybrid of the allylic carbocation intermediate can be depicted by two resonance forms (shown below) both of which have a full positive charge.

    Step 1)

    Mechansim Step 1.png

    Step 2)X

    This allylic carbocation, more properly denoted as the resonance hybrid shown below, has two carbons which have significant positive charge. The halide ion can attack either carbon. Attacking the central carbon, adjacent to the site of protonation, leads to the the 1,2-addition product. Attacking the terminal carbon, distant from the site of protonation, leads to the 1,4 addition product.

    Mechanism step 2.png

    Other Electrophilic Additions

    Formation of both 1,2- and 1,4-addition products occurs not only with hydrogen halides, but also with other electrophiles such as the halogens (X2). The electrophilic addition of bromine to 1,3-butadiene is an example. As shown below, a roughly 50:50 mixture of 3,4-dibromo-1-butene (the expected 1,2 addition product) and 1,4-dibromo-2-butene (the 1,4 addition product) is obtained. The double bond of the 1,4 addition product is primarily formed as the (E) isomer.


    Example 4.png

    Worked Example \(\PageIndex{1}\)

    Give the expected products from the following reaction. Show both 1,2 and 1,4 addition products.

    Worked Example 1.png

    Solution

    For this example the two double bonds in the diene are not equivalent and must be considered separately. Each double bond of the reactant has the possibility of forming a 1,2 and a 1,4 addition product so the reaction has the possibility of forming four product. Protonate each double bond separately and draw out the resonance forms of the allylic carbocation intermediate created. Then react each resonance form with Br- to create the two possible products. Repeat this process with the second double bond to create the four possible product. Lastly, look for symmetry in the products to see if any are same molecule. Also, consider the stability of each carbocation created during this process. The most stable carbocation will generally product the favored product of the reaction.

    Addition to the first double bond creates a resonance form with a tertiary carbocation intermediate. Due to the stability of the tertiary carbocation this product will most likely go one to be the preferred product of this reaction.

    Worked Example2.png

    Addition to the second double bond creates a symmetrical compound so only one product is formed.

    Worked Example3.png

    Over the reaction proposed would be expected to form three products.

    Worked Example 4.png

    Exercise \(\PageIndex{1}\)
    1. Give the 1,2 and the 1,4 products of the addition of one equivalent of HBr to 1,3-hexa-diene.
    2. Look at the previous addition reaction of HBr with a diene. Consider the transition states, predict which of them would be the major products and which will be the minor.
    3. Write out the products of 1,2 addition and 1,4- addition of HBr to 1,3-cyclohexadiene.
    4. What is unusual about the products of 1,2- and 1,4- addition of HX to an unsubstituted cyclic 1,3-diene?
    5. Write out the products of 1,2 addition and 1,4- addition of Br2 to 1,3-cyclohexadiene.
    Answer

    1)

    14.2.png

    2) The products i-iii all show a secondary cation intermediate which is more stable than primary. Therefore those would be major products and the iv product would be the minor product.

    14.2(2).png

    3) The same product will result from 1,2 and 1,4 addition.

    Answer to 1.gif

    4) Addition of the HX to unsubstituted cycloalka-1,3-dienes in either 1,2- or 1,4- manner gives the same product because of symmetry.

    5) Both 1,2 and 1,4 products will form.

    Answer to 1 B.gif

    Objectives

    After completing this section, you should be able to

    1. explain the difference between thermodynamic and kinetic control of a chemical reaction; for example, the reaction of a conjugated diene with one equivalent of hydrogen halide.
    2. draw a reaction energy diagram for a reaction which can result in both a thermodynamically controlled product and a kinetically controlled product.
    3. explain how reaction conditions can determine the product ratio in a reaction in which there is competition between thermodynamic and kinetic control.
    Key Terms

    Make certain that you can define, and use in context, the key terms below.

    • kinetic control
    • thermodynamic control

    Like non-conjugated dienes, conjugated dienes are subject to attack by electrophiles. In fact, conjugated dienes experience relatively greater kinetic reactivity when reacted with electrophiles than non-conjugated dienes do. The reaction mechanism is similar to other electrophilic addition reactions to alkenes (Section 7.9). During the electrophilic addition of HBr to a 1,3-butadiene, However, there are two possible outcomes once the carbocation intermediate is formed. The allyl carbocation is stabilized by resonance structures that vary in the position of the carbocation. This allows the bromide ion to add to either of these carbons resulting in the formation 1,2 and 1,4 addition products. When this reaction is run at a temperature of 0 oC or lower, the 1,2 addition product dominates. However, if the same reaction is run at 40 oC the 1,4 addition product dominates.

    The reaction of one equivalent of hydrogen bromide with 1,3-butadiene yields different product ratios under different reaction conditions and is a classic example of the concept of thermodynamic versus kinetic control of a reaction.

    Example 1.svg

    At lower temperatures the formation of the 1,2 and 1,4 addition products are irreversible and thus do not reach equilibrium. When a reaction is irreversible the major product is determined by the relative reaction rates and not by thermodynamic stability. Of the two products, the formation of the 1,2 addition product has a higher rate of reaction and forms faster making it the major product. The reaction product which forms with a higher rate of reaction is called the Kinetic Product and when the kinetic product dominates, the reaction is said to be under Kinetic Control.

    At higher temperatures the reaction to form both products becomes reversible and a reaction equilibrium is reached. When a reaction is reversible the major product is determined by thermodynamic stability. The 1,4 addition product is more stable and becomes the major product under these reaction conditions. The more stable product is called the Thermodynamic Product and when the thermodynamic product dominates, the reaction is said to be under Thermodynamic Control.

    The 1,4 addition product is more stable because it has an internal, disubstituted double bond, and we know that as a general rule that the thermodynamic stability of an alkene increases with increasing substitution. So, when compared to the terminal, monosubstituted alkene of the 1,2 addition product, the 1,4 addition product is expected to be more stable.

    A simple definition is that the kinetic product is the product that is formed faster, and the thermodynamic product is the product that is more stable. This is precisely what is happening here. The kinetic product is 3-bromobut-1-ene, and the thermodynamic product is 1-bromobut-2-ene (specifically, the trans isomer).

    An explanation for the temperature influence is shown in the following energy diagram for the addition of HBr to 1,3-butadiene. The initial step in which a proton bonds to carbon #1 is the rate determining step, as indicated by the large activation energy (light gray arrow). The second faster step is the product determining step, and there are two reaction paths (colored blue for 1,2-addition and magenta for 1,4-addition).

    At elevated temperatures, the products are more likely to have enough energy to overcome the reverse activation barrier for the second step allowing regeneration of the carbocation intermediate. Under these conditions, this step of the mechanism will be reversible and an equilibrium will be established. Since the system is no longer limited by temperature, the system will minimize its Gibbs free energy, which is the thermodynamic criterion for chemical equilibrium. This places the reaction under thermodynamic control and the most thermodynamically stable molecule, the 1,4 addition product, will be predominantly formed.

    dienrgdi.gif

    If the reaction temperature is kept sufficiently low, the products will not have enough energy to overcome the reverse activation barrier to regenerate the carbocation intermediate making this step of the mechanism effectively irreversible. This reaction is under kinetic control meaning the product which forms faster, the kinetic product, will predominate.

    Of the two reaction pathways, the 1,2-addition has a smaller activation energy and would be expected to have a higher reaction rate than the 1,4-addition. The high reaction rate for 1,2-addition can be attributed to the formation of an ion pair during the reaction mechanism. This means that, after a double bond is protonated, the halide counterion remains in close proximity to the carbocation generated. Immediately following dissociation of HX, the chloride ion is going to be much closer to C−2 than it is to C−4, and therefore attack at C−2 is much faster. This ion pair mechanism is a pre-exponential constant effects that is attributed to the proximity and frequency of collision rather than a activation barrier effect.

    Mechansim Step 1.svg

    Experimental Evidence for the Ion-Pair Mechanism

    In 1979, Nordlander et al. carried out a similar investigation on the addition of DCl (deuterated hydrochloric acid) to a different substrate, 1,3-pentadiene. This experiment was ingenious, because it was designed to proceed via an almost symmetrical intermediate:

    14-3-4.png

    Resonance forms 7a and 7b are both allylic and secondary. There is a very minor difference in their stabilities arising from the different hyperconjugative ability of C-D vs C-H bonds, but in any case, it is not very large. Therefore, if we adopt the explanation in the previous section, one would expect there not to be any major kinetic pathway, and both 1,2- and 1,4-addition products (8 and 9) would theoretically be formed roughly equally.

    14-3-5.png

    Instead, it was found that the 1,2-addition product was favored over the 1,4-addition product. For example, at -78oC in the absence of solvent, there was a roughly (75:25) ratio of 1,2- to 1,4-addition products. Clearly, there is a factor that favors 1,2-addition that does not depend on the electrophilicity of the carbon being attacked! The authors attributed this effect to an ion pair mechanism. This means that, after the double bond is protonated (deuterated in this case), the chloride counterion remains in close proximity to the carbocation generated. Immediately following dissociation of DCl, the chloride ion is going to be much closer to C-2 than it is to C-4, and therefore attack at C-2 is much faster. In fact, normal electrophilic addition of HX to conjugated alkenes in polar solvents can also proceed via similar ion pair mechanisms. This is reflected by the greater proportion of syn addition products to such substrates.

    Exercise \(\PageIndex{1}\)

    1) Why is the 1,4-addition product the thermodynamically more stable product?

    2) Addition of 1 equivalent of bromine to 2,4-hexadiene at 0 degrees C gives 4,5-dibromo-2-hexene plus an isomer. What is the structure of that isomer?

    3) The kinetically controlled product in the below reaction is:

    Practice Problem 10.gif

    4) For the reaction above, which product is the result of 1,4-addition?

    Practice Problem 10.gif

    5) What would be the major product of the addition of HBr to 2,3-dimethyl-1,3-cyclohexadiene under thermodynamic conditions?

    6) Consider the reaction with 1,3-buta-diene reacting with HCl. Propose a mechanism for the reaction. Also, Predict why the 1,4 adduct is the major product in this reaction compared to the 1,2.

    Answer

    1) The 1,4- product is more thermodynamically stable because there are two alkyl groups on each side of the double bond and more substituted alkenes are more stable.

    2) 2,5-Dibromo-3-hexene

    3) 3-Chloro-1-butene

    4) 1-Chloro-2-butene

    5)

    Answer_to_1.gif

    6)

    14.3.png

    Even though the cation would prefer to be in a secondary position in the transition state, the final product is less stable with a terminal alkene. Therefore the major product will be the 1,4 adduct.


    14.6: Electrophilic Attack on Conjugated Dienes: Kinetic and Thermodynamic Control is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.