Skip to main content
Chemistry LibreTexts

6.6: Uses of C-13 NMR Spectroscopy

  • Page ID
    432207
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

     

    Learning Objectives
    • understand how 13C NMR data can be used to distinguish between two (or more) possible structures for an unknown organic compound
    • determine if you made the correct product

    13C NMR spectroscopy derives information that is helpful for structure determination, especially when paired with 1H NMR spectroscopy. 13C allows the organic chemist a way to determine how many non-equivalent carbons are in a molecule of interest. This allows one to understand if there is symmetry in the molecule or not. The chemical shift of each of the resonances in 13C NMR spectra gives information about the electronic environment, which can indicate what type of functional group is present or what type of bond is present. If you add in DEPT, then the organic chemist can determine how many hdyrogens are attached to each of the carbons. 

    Example \(\PageIndex{1}\)

    The E2 reaction follows Zaitsev's rule, but how do we know that? Let's consider the reaction below: 

    e2reaction.svg

    1) How can you tell the difference between 1-butene and 2-butene in a 13C NMR spectrum?

    2) Which product was made based on the 13C NMR spectrum of the product? 

    13C NMR spectrum of the product: 

    clipboard_e82ddc9bf0748c098a45756bbe118d9f0.png

    Solution

    1) IR spectroscopy and mass spectrometry would not be helpful in elucidation of this problem. It is very difficult to address the structural differences in either of those spectroscopic methods. 1H NMR could be used, but there would be overlapping peaks, so it would again be difficult. In a 13C NMR spectrum, 1-butene would have 4 different signals in the spectrum where as 2-butene would have 2 distinct signals in the spectrum.  

    2) With just 2 signals in the spectrum, the product is 2-butene. 

    Example \(\PageIndex{2}\)

    The 1H NMR spectrum had overlapping peaks, which lead to inconclusive results on if the product, ipsenol, was isolated. The structure of ipsenol is below. A 13C NMR spectrum along with a DEPT-135 and DEPT-90 to identify the product. 

    ispenol.svg

    13C NMR spectrum: 

    clipboard_e9c61faf39de32d4004ef30331d6bf562.png

    DEPT-135 spectrum: 

    clipboard_e2e291ed3b94b085c0b798933336fe371.png

    DEPT-90 spectrum: 

    clipboard_e984512e3b382f72cec9660f1275e0f94.png

    Solution

    Carbon NMR along with DEPT can be a great tool in structure determination. The range for carbon NMR is wider than for 1H NMR, so it can help spread the spectrum out and remove overlapping peaks. In the 13C NMR spectrum, there are 10 distinct peaks, so all of the carbons have been accounted for. If we consider the structure for a moment, then it can be seen that there is 1 quaternary carbon, 3 methines (CH), 4 methylenes (CH2), and 2 methyl groups (CH3). In the DEPT-135, the peak at 142.79 ppm has gone away. This is the quaternary carbon, since it is not attached to any hydrogens directly, it is not observed. The negative peaks are methylene groups and there are four - just as expected. There are 5 peaks that are either a methine or methyl group. Finally, the DEPT-90 informs that there are 3 methine groups, which means the peaks at 23.08 ppm and 21.50 ppm would be methyl groups. These 1D-carbon spectra do correlate with the structure. 

    Contributors and Attributions


    6.6: Uses of C-13 NMR Spectroscopy is shared under a not declared license and was authored, remixed, and/or curated by Lauren Reutenauer.